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An Equivalent-Circuit Model for Flexural-Disk Transducers

Abstract

The goal of this project was to develop a set of analysis tools for performance prediction of
flexural-disk acoustic projectors. The emphasis is on analytically based formulations designed to
merge the physics of the flexural-disk structure with typical operational requirements of
frequency, source level, bandwidth, and operating depth. While finite-element analysis coupled
with acoustic radiation models would be used to refine designs, analytical models permit
isolation of the major effects of essential design variables. By developing an understanding of
the transducer performance, the effectiveness of various strategies for flexural-disk designs can
be evaluated.

The model described here covers four configurations of flexural-disk transducer element. These
are two- and three-layer disks clamped at the center and two- and three-layer disks simply
supported at the edge. One of the layers in each case is a passive substrate, the other layer(s) is
(are) piezoelectric ceramic. The only constraints on the layer thickness are that the three-layer
configurations must have the same thickness of ceramic on both sides of the substrate and that in
all configurations the overall thickness be small with respect to the radius. For the center-
clamped case, a non-zero radius for the clamping post is permitted (required, in fact, since the
zero-radius center clamp is unrealistic). An option is included to permit treatment of a fluid-
filled volume behind the disk.

The equivalent-circuit model is constructed including dielectric and mechanical losses and it also
includes a simple model for the radiation load. Using this equivalent-circuit model, the driving-
point admittance (with and without water load), the transmitting voltage and current responses,
and the free-field voltage receiving response are calculated. With the file structure employed in
the MathCad program, the user can export the equivalent-circuit parameters to other applications
or the user can import equivalent-circuit parameters from other sources to run the internal
performance calculations.
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I. Introduction

This report describes the development of an equivalent circuit model for flexural disk

transducers'. Four configurations are considered — two center-supported structures (Figs. 1 and

2) and two edge-supported structures (Figs. 3 and 4).

SUBSTRATE

!

CERAMIC

CENTER
SUPPORT POST

Fig. 1. Two-layer, center-supported flexural disk structure. In this view, the water would be on
the upper face and the lower face would contact a gas back-volume. For many practical
transducers, the structure would be doubled so as to have two structures back-to-back. The edges
are nominally free but would, in practice, be sealed with boots or bellows.

CENTER
SUPPORT POST

o — .

Fig. 2. Three-layer, center-supported flexural disk structure. This structure is assumed to be
symmetric with equal thickness of ceramic on either side of the passive substrate.
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HINGED EDGE . t,
SUPPORT

Fig. 3. Two-layer, edge-supported flexural disk structure. As in Fig. 1, water would contact the
upper surface. For designs not compensated for hydrostatic pressure, this would ensure that the
ceramic is in compression. For the edge-supported transducers, the housing contacts the active
element at its circumference. The edge is simply supported.

HINGED EDGE . t,
SUPPORT

Fig. 4. Three-layer, edge-supported flexural disk structure. As in Fig. 2, only the symmetric case
with both ceramic disks equal in thickness will be considered.

Matrix notation is used throughout. In order to provide continuity with the bulk of the
transducers literature, electric flux density, D, is used to combine the effects of free space and
materials properties (through the permittivity, £€). A better approach is to treat all dielectric
properties through the polarization, P, and susceptibility, ¥. As long as the material is strictly
linear, use of the older convention will not cause problems but, for high drive levels, a
formulation in terms of polarization may be of more value**. Also, thin-plate theory* will be
used; however, the approach to including shear will be described briefly.

II. Basic Piezoelectric Equations
To solve the flexural-disk problem, the plane-stress assumptions are invoked and the matrix
equations can be reduced significantly. The basic assumptions of plane-stress are:

e Normal stress in poling direction (7} or T3) is negligible.

e “Vertical” shear stresses (T, T} or T4, T5) are negligible.
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Furthermore, from the electrode configuration (electrodes only on disk surfaces, not edges), the
electric field is assumed to be significant only in poling direction (E; or £3).

The basic equations that couple the mechanical and piezoelectric behavior relate four variables:
the strain, S, the stress, 7, the electric field, £, and the electric flux density, D. In three

dimensions, each of these quantities is a matrix. Since the plane-stress assumptions constrain
stress not strain, the following general form® is the appropriate starting point:

S = s*T + d"E )
D = dT + €"E )

which can be expanded without further approximation as

S = slﬁ n + SlEz T, + dyE _ 3)
S, = slsz I + Slﬁ T, + dyE, 4)
D, = d, T, + d,T, + Esrs E, 3)

This is a complete description of the in-plane mechanical behavior and the electrical behavior.
The out-of-plane strain, Ss, is not zero but that strain does not enter our analysis. If we had
chosen an equation set with S as an independent variable, then S3 could be eliminated using the
T3 = 0 equation.

In some circumstances, other forms of these equations are more convenient. If we treat Egs. 3-5
as a single matrix equation®,
i sg| |dw T,
E E d (6)
le sll 3l 7;

2
D, d, d| [l JLEs

where the 3x3 matrix on the right-hand side has been partitioned to show its composition.
Inverting this matrix equation leads directly to the equivalent coefficients for the plane-stress
approximation:

CClll) CCS

L ’-’*"m S,
T,| = Ccll; Ccﬁ —hh, S, N

E, “hhy, —hhy| (B85 |LPs

The effective stiffness coefficients (cc), piezoelectric coefficient (hh), and inverse permittivity
(BP) can be extracted directly from the inverse of the original 3x3 matrix. In order to emphasize
the difference between the two- and three-dimensional coefficients, those coefficients having
different values in two dimensions will be denoted by doubling the letter. For example, the
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stiffness coefficients for the reduced two-dimensional problem will be denoted cc;y, and ccy,. In
setting up these disk problems, manufacturers’ values for the coefficients can only be used in Eq.
3. The other coefficients must be derived through the matrix inverse. The matrix equation, Eq.
7, contains the three equations,

L = ceiS, + cc,S, — hiy, D, ®)
T, = ccyS + cciS, — hiy D 9)
E, = —hh,S, - hh,S, + PBB;D, (10

Also, in polar coordinates, the strain matrix is

S—S'—S” 11
= s, | = |s, (11)

with an equivalent form for the stress matrix.
Summary of Conversion to Two-Dimensions

In order to construct the plane-stress equations, the following subset of the three-dimensional
quantities are required:

E E
sf11, 512, da), and €3,

These permit construction of the matrix equation, Eq. 6. Inverting the 3x3 matrix in Eq. 6
produces the values for oc? 1, cc® 12, hh3y, and BBS33.

To illustrate the difference between the effective plane-stress quantities and the three-
dimensional quantities, consider PZT-8. Table I compares the 2-D and 3-D values for the
stiffnesses, the A3, coefficient, and the permittivity at constant strain.

Table I. Comparison of properties’ for three-dimensional analysis and two-
dimensional (plane-stress) analysis for PZT8.

Property 3-D 2-D [units]
sE“ 11.5 same x 102 m?*/N
sElz -3.7 same x 102 m?/N
ds| -97 same x 102 C/N

e 13/& 1000 same -
&P 147 97 x 10° N/m?
P 86.8 55.2 x 10° N/m’
h3) -0.78 -1.93 x 10° V/m
33/ 561 727 -
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A point to note regarding two-dimensional analysis of piezoelectric materials concerns the
Poisson’s ratio, 0. There are two values for o — the value for constant electric field, 0%, and the
value for constant electric flux density (or constant polarization), ¢”. For either value, the
Poisson’s ratio in the 12-plane is

= & (12)

Because the piezoelectric material is anisotropic, the Poisson’s ratio in the 12-plane can be larger
than 0.5. The Poisson’s ratio in either the 13- or 23-plane is considerably smaller so the material
is still volumetrically stable. For PZT-8 (see Table I), the value of o” derived from the 3-D
properties is about 0.55. The corresponding value from the 2-D properties is 0.46 but, for some
materials, the 6° from the 2-D properties is also greater than 0.5.

Table II presents a summary of the appropriate two-dimensional properties for several generic
piezoceramic types’.

Table II. Properties for typical piezoceramic materials. Properties with doubled letters are those
values corresponding to plane-stress conditions.

Property PZT4 PZT5H PZT8 [units]
st 12.3 16.5 11.5 x 102 mY/N
sFia -4.05 -4.78 3.7 x 102 m’/N
ds, -122 274 97 x 1012 m*/N

33l 1300 3400 1000 -

0 7600 7500 7500 kg/m’
Pt 11.0 14.0 10.4 x 102 m?*/N
sPia -5.34 -7.27 -4.76 x 102 m*/N
ccPyy 119 97.8 121 x 10° N/m®
Py 57.7 50.8 55.2 x 10° N/m?
hhs, -1.87 -1.35 -1.93 x 10° V/m

e /e 892 1950 728 -

II1. Relationship of Strain to Deflection

In order to analyze the behavior of flexural-disk structures, a deflection function is determined.
For thin-plate problems, the exact solution can be found for both static deflection and for
dynamic deflection at resonance. Alternatively, approximate forms can be developed for the
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deflection function and optimized by minimizing the strain energy (for static deflection) or by
minimizing the resonance frequency (for resonance deflection). Once the deflection function is
determined, the strains can be evaluated.

In polar coordinates, if the deflection function is w(r, 6), then

*w
Sl = Srr = _2(87] (13)
1 ow 1 *w
S2 = See = —Z(;-s;- + ;—2--5?) (14)
3 19w 1 dw
) 03

where z is the displacement (in the 3-direction) away from the neutral plane.

In general, flexural-disk transducers will exploit only axially symmetric modes. In those cases,
the strains are:

w
Sl = Srr = -z arz J (16)
S2 = Sae = -z _1_9_‘1'.) (17)
r or

and Sg¢ is zero.
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IV. Basic Solution Process

The analysis starts with determination of the deflection function. For simple, homogeneous disk
problems an exact solution® for deflection can be done (see Appendix A). The Version 3 model
uses an approximate technique (see Appendix B) to permit flexibility in future revisions. Once
the deflection function has been determined, the strain is derived from Egs. 16 and 17. Then the
basic piezoelectric equation set with strain as an independent variable (Egs. 8-10) can be solved.

Solution of the basic piezoelectric equation set proceeds as follows:

A.

Integrate (10) over z (thickness) and solve for D;. Because there are no electrodes in the
z-direction (i.e., on the edges of the plate), D; is not a function of z. The electric field,[E,
is a function of z; however, it is not necessary to determine that dependence. The integral
of E over thickness is identical to the electrode voltage, which is the quantity of
importance.

Integrate this expression for D3 over the electrode area. The electrode voltage is constant
over the electrode. The integral of D over the electrode area is the total charge. Set the
charge equal to zero and solve for the open-circuit voltage, ¥°C.

The result produced in A gives D; as a function of electrode voltage and the strains. D;°¢
results from setting ¥ = V°; D;° results from setting ¥ = 0.

The potential energy density for strain energy is 2 $;7) + Y2 S,T>. The open-circuit
potential energy density is written using (8) and (9) with D;°C; the short-circuit potential
energy density is written with Dy>C

The strains, S; and S, can be written in terms of the deflection function according to Eqs.
16 and 17.

F. Integrate the potential energy densities over the ceramic volume to obtain U°C and U,

Integrate Dy°C over the electrode area to obtain the short-circuit charge, ¢°C.

Integrate the deflection, w, over the face area; multiply by w, and divide by the face area
to obtain the average face velocity, vayg.

Integrate the kinetic energy density, % pv* = % p «/w?, over the ceramic volume to
obtain the kinetic energy, KE.

The blocked dielectric energy density is Y (D3 E3)°™°. Use Eq. 10 to write this energy
density and integrate over the volume of the ceramic to obtain the blocked dielectric
energy,

K. Determine the basic equivalent-circuit parameters —

0*KE

2
v,

(18)
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k = (19)

C = (20)

¢ = 21

ow,,

where m and £ are the lumped mechanical mass and stiffness, respectively; Cp is the
blocked capacitance; and ¢ is the electromechanical conversion ratio (current per velocity
or charge per displacement).

L. Calculate the electromechanical coupling factor:

oc _ yrsc
o= L - U 22)

M. Calculate the resonance frequency:

(23)

V. Solution Details

This section will treat only the ceramic layer. The equations are complicated enough that
including the arbitrary neutral plane location and the substrate dynamics will be deferred to
Appendix C and Appendix D as referenced at the end of this section.

A. Find expression for electric flux density, D;, in terms of the electrode voltage by
integrating Eq. (10) over z. For now, assume that the neutral plane is on the inner surface
of the ceramic.

Vv = IE3dz = —thIJ‘(S, + 8,)dz + BB tD, (24)
0

0

Solving for Ds:

s I3
D, = fet—”-[r/ + hhy, (S, + Sz)dz:l (25)

0
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B. Find the open-circuit voltage by integrating Eq. (24) over the electrode area and setting
the surface charge equal to zero:

V-4 = —thJ‘J-(S, + S,)dzdd4 + Bﬂﬁtj& dA (26)
40 A4

The integral of D; over area (last term on right side) is the surface charge. Set this equal to
zero to obtain the open-circuit voltage:

yoc = —-h-%—"H(S, + 8,)dzdA Q27
A 0

C. Find D;°¢ and D5*° by setting ¥ = ¥’ and V=0 respectively in Eq. (25).

!

(s, + 8, )dzjl (28)

t

S
p* = %2 {V"C + hh,
0

s !
D = 8833:’”3' f(s, + 8,)dz (29)
0

D. Write expressions for the strain energy density, U , for both the open- and short-circuit

electrical conditions.
~ 1 |
U =350 + 350 (30)

Use Eqgs. 8 and 9 to replace T and 7T>:

ﬁOC l{CCﬁSlZ+2CCIL;S|SZ""CCII?SZZ_hthDfioc (S1+S2)} (31)

ﬁSC %{603 S12 +2CCII; Sl Sz + CCI? S22 ‘hh.'il D3SC (Sl + SZ)} (32)

E. Replace S; and S; in the above equations by their equivalents in terms of the deflection
function (Egs. 16 and 17):
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32 w »”
S, = -z 52 ] = -ZW (33)
S2 = -z la_w] = _z w (34)
r or r

where the primes indicate differentiation with respect to r. Integration of S) or S, with
respect to z from 0 to ¢ is equivalent to replacement of z by #/2. Similar integration of either
quantity squared (or S)S5>) is equivalent to squaring (or performing the cross product), then
replacing z* by /3. (Note: this is where the assumption that the neutral plane is at the
ceramic-substrate interface is made explicit; z = 0 is the location of the neutral plane (one
side of the ceramic) and z = ¢ is the other side of the ceramic.) For example,

2
yoc - .”_”2_;1.‘.. f (W + w/r)d4 (35)
N
pF = -2l (ot i) (36)
N
DY = E%B [or+wimaa - (w4 w’/r)} (37
A

F. Integrate the strain energy densities over the ceramic volume to obtain the total strain
energies. First, integrate over z from 0 to «:

t
J‘(:’SC dz =

1]

1 t3 D »\2 , 2 ts D L SCt2 » ’
515 “Cn = “Cn Y
RN [(w) +(w/r)]+ Jee 2w'w'/r + hh,, D; 2(w + wir)l (38)

or,
Iﬁse dz = %{f“[(w')z + (w'/r)Z] + £ [2w'w'/r]} (39)

where the f parameters have been introduced to simplify the notation:

10
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3 3
Su = ccﬁ - Zeefshhsl > fu = cchz - Zsefshhsl (40)
Also, from Egs. 31 and 32,
~ ~ hh
g = 0+ s+ 5) (D - DfF) @1)

where, from Egs. 28 and 29,

N
D - D = ff_sz.z"_’.”_ﬁ{% _[ (W + w'/r)dA} (42)
A

$0,

gex ki (W + wir)
8 A

! !
fﬁoc dz = J‘ﬁoc dz I (W + w/r)d4 (43)
0 0 A

After integrating over the thickness, integrate over the cross-sectional area to find the total
energy density. Because only axisymmetric deflections are being considered, the integration
over angle yields a factor of 27, consequently,

3
U = ”—;—{f“ J‘((w")2 + (w'/r)z)rdr + fi ZJ-w'w'dr} (44)
and
2.3 S 2 2
U = y* + TLEnMh — hhy { J' (w" + w'/r)rdr} (45)

It is useful to re-write the integrals over 7 in terms of non-dimensional variables so that the
integrations become functions only of the shape of the deflection; actual dimensions can be
brought out into the leading factors. To do this, define

g = w/w, ; n = rla (46)

where wy is the maximum deflection and a is the disk radius. With these replacements, the
short-circuit energy becomes

o = T (e - @ mPhan + o2 fegan) @)

3a’

11
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with the open-circuit energy similarly changed.

To further simplify the notation, it is convenient to introduce several “shape” integrals — that
is, integrals that depend only on the shape of the deflection function:

_ [ l[2e) . (rag)
Iy = Iﬂan] +(nan””d" @)
I, = 2!%6—5 an (49)
o o, 198
I, = f{anz + nan)ndn (50)
I, = ZI ndn (51

The integrals I,o and [,; are two terms in the expressions for potential (strain) energy; Ip is
associated with charge; and I, is defined so that

A = nad’l, (52)
If the electrode were continuous from center to outer edge, then I, would be one. For a
center-supported disk with a non-zero center-post radius or for an electrode that did not cover

the entire disk, /, would be less than one.

With these shape integrals,

2]
Vo = wyhhy 2 (53)
a” 1,
nt® wl
U* = Ta—‘; o + Sl (4
t* w 3 I;
U = BL M e p o £l + ZeeS hh: £ (55)
3 g2 { 11 4p0 12 £ pl1 5 33 It IA
G. Integrate Ds°° (Eq. 36) over the electrode area to obtain the short-circuit charge, ¢°¢:
q*¢ = -meelhht | (W + wW/r)rdr = -mw €€l hhy,t1 (56)
33 31 0 kx} 31 Q

12
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Define a blocked capacitance (that is, the capacitance with zero strain):

ge;, A gey, ma’

c, = ™A o B (57)
From Egs. 53 and 56,
L R B L Ay (58)
2 C, 2 2 g2 B,
and from Eqgs. 54 and 55,
U = UT 4 -;-cg (roc ¥ (59)

which shows explicitly the relationship between the pure electrical energy storage and the
two potential energy terms.

To complete the construction of the equivalent circuit:

A. Integrate the deflection, w, over the face area and divide by the area to obtain the average
displacement. Multiply this result by @ to obtain the average face velocity.

v = ZZO wrdr = ”A wwozj'gndn (60)

I
v = Ww, — (61)

where another shape integral has been defined:

I, = ZIEndn (62)

} B. Integrate the kinetic energy density over the ceramic volume to obtain the total kinetic
‘ energy, KE, in the ceramic.
\

KE = —pv? = —l—pa)zw2 (63)

13
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KE = %pwzfjwzdsz = 7{;0ta)2.|.w2 rdr (64)
40
KE = pnazthwjj.ézndn = prattw*w I, (65)
where
Ie = [&man (66)

C. Write the blocked dielectric energy density and integrate to find the total blocked
dielectric energy. The energy density is

u® = %(DJEJ)Szo (67)

From Eq. 10 with S; and S; equal to zero:

E, = — D (68)

From Eq. 25 with S, and S; equal to zero:

S
D, = giiV (69)

SO

~ 1 VY
U = —eel|— 70
s 1) 2z

This expression is independent of z and r so the total energy is simply
2 N 2
Ut = %gg;(ﬁj td = %MVZ (71)
t

which, by Eq. 57, is

1
U = ECB v? (72)

14
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D. Determine the equivalent circuit parameters. The mechanical mass is given by Eq. 18:

0*KE I} 0*KE
32, " T aaw) @
Vavg v (w Wo )
With Eq. 65,
2 [j IKE
m = 2pTma t——]—z— (74)
The mechanical stiffness is given by Eq. 19:
k _ az USC _I_j aZ USC (75)
ow,, I ow
With Eq. 54,
2t I}
k = ‘:',,";'z_(fnlpo + flzlm)l—; (76)
As an aside,
SC 1 2
U = > kwie an

The blocked capacitance has already been determined through Eq. 57. Alternatively, it is the
second partial derivative of U5 with respect to voltage. (Compare Eq. 71 to Eq. 57.)

The electromechanical conversion factor is the ratio of electrical current under short-circuit
conditions to the average face velocity. This is identical to the ratio of electrical charge to

average face displacement:

* = T

avg

With Eq. 56,

15

aqSC

1,997
I, dw,

(78)
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1,1
¢ = meed hhyt 22

(79)

v

This completes determination of the basic set of equivalent-circuit parameters. The dielectric
loss can be included via the loss tangent and Cp. There is, at present, no determination of
mechanical loss. The equivalent circuit’ is drawn in Fig. 5 using an explicit electrical-to-
mechanical transformer and in Fig. 6 by transforming all elements to the electrical side.

—> 109 -

I+C ~rA || o, a9
m |l

e G % 17k pA

o -

Fig. 5. Electromechanical equivalent circuit for flexural disk transducer with mechanical
quantities to the right of the transformer and electrical quantities to the left of the

transformer.
i o ) Y ||_< ° ¢ Vavg
+ +
m/ ¢? |l
- o O-

Fig. 6. Equivalent circuit with all quantities expressed in equivalent electrical terms.

E. Calculate the electromechanical coupling factor:

UOC _USC
K= e = T (80)

(See Egs. 59 and 77.) With Egs. 54 and 55,
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12

2z-:sf3 hh} £

K? = 2 L = @1)
3

fn IpO + f121p1 + Eessshhszl I_Q

A

F. Calculate the resonance frequency:

wl = kim (82)
In this version, radiation loading is considered by including the approximate induced water
mass. The water mass is calculated from the mass appropriate to a uniform, baffled piston of
the same effective area as the actual piston. This radiation mass is

mrad = pwater T az (g—;] IA (83)

The water-loaded resonance frequency is then

W, = — (84)

water
m+ m,_,

The infinite baffle condition was chosen since it is a reasonable approximation in two
common situations. The obvious case is if the transducer is mounted in a larger, nearly flat
structure. Less obvious is the case in which the transducer comprises two flexural disk
elements mounted back-to-back and driven to expand and contract in phase. In this case, the
pair of sources can be replaced by a single source in an infinite baffle since the pair of
sources represents the image-source solution to the baffled-source problem. Even if the
element is not baffled, the error introduced is relatively small.

Treatment of an arbitrary neutral plane and incorporation of the dynamics associated with the
substrate are straightforward modifications of the above analysis. The details are included in
Appendix C, Appendix D, and Appendix E.

A preliminary treatment of stress in the transducer element is outlined in Appendix F and the
results of the analysis in this report are compared with the results given in Woollett’s report’
in Appendix G. Appendix H contains the MathCad worksheet listings and Appendix I
contains the materials properties files.

17
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Apppendix A: Exact Deflection Functions

For thin-plate theory, the general solution for the transverse displacement, w, as a function of
radius, 7, and angle, 0, is

w(r,0) = cos(n8)[4, J, (kr) + 4,7, (kr) + A, 1, (kr) + 4, K, (kr)] (A1)

n2 *n
where

. 12(1-0?)pw?
K = o (A2)

and E is the material’s Young’s modulus and o is the Poisson’s ratio. J, and Y, are the ordinary
Bessel functions of the first and second kind, while 7, and K, are the modified Bessel functions.
Here, only the axially symmetric solutions will be considered (n = 0):

w(r) = A4 J,(kr) + 4, Y, (kr) + 4,1, (kr) + 4,K,(kr) (A3)

To organize the boundary conditions, a number of auxiliary definitions will be introduced.
These include displacement functions,

D, = J, > D, = I, > Dy = I 3 D, = K, (Ad)
slope functions,
S, = -J ; S, = -V, ;8 = 1 ; S, = =K, (A5)

radial moment functions,

l-o l-o

M, = = J, ; M, = = Y, (A6)
l-o -0

M, = - I, ; M, = K, (A7)
kr kr

and radial (Kelvin-Kirchhoff) shear functions,

v = -J ; V, = -Y > v, = -1 > Ve = K, (A8B)
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These functions are combined to form the appropriate boundary conditions. For example, the
condition for zero displacement at » = a would be written as follows:

Z4am)=o (A9)

The frequency constant is found by searching for the zeroes of the determinant of the matrix
formed by the boundary condition functional forms. For edge-supported plates, there will be two
conditions on the edge and the matrix will be 2x2; for plates supported by an inner support post,
there will be two conditions at the support and two conditions at the outer edge so the matrix will
be 4x4. If a is the outer radius, then define a frequency constant, A2, equal to (ka)*. Fora
clamped edge, the deflection (D) and the slope (S) will be zero; for a simply-supported edge, the
deflection (D) and the radial moment (/) will be zero; for a free edge, the radial moment (3/)
and the shear (V) will be zero.

For example, the boundary-condition matrix for a circular plate, simply-supported at the edge is

D) D@
Fo= [M.w Mgm] (A10)

The functions with subscripts 2 and 4 are associated with the Bessel functions, ¥, and K, which
are infinite for zero argument; consequently, these functions are discarded in the solution for
plates with continuity at » = 0.

As another example, the boundary-condition matrix for a circular plate, centrally clamped at r =
b and free at the outer edge is

(All)
M,A) M) M) M)
n@) @) @) @)
where o= b/a. In matrix form, the actual boundary conditions would be written
F-A4 =0 (A12)
where 4 would either be 2x1 or 4x1:
Al
A, = 4 : A - |4 (A13)
edge A3 ’ center A3
A

s
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In any case, the frequency constants are the values of A for which
|F| = 0 (Al14)

The frequency constants, A,, are independent of the absolute disk dimensions and the disk
material except for a modest dependence on Poisson’s ratio (through the M functions). There are
an infinite number of axially symmetric resonances but, here, only the first is important so the
search for the roots of Eq. A14 would be restricted to the smallest value of A.

Once the frequency constant for the lowest mode is found, the deflection function can be
determined. For the edge-supported cases, there are two arbitrary constants (4, and 4; from Eq.
Al3). At resonance, the two equations resulting from the matrix multiplication in Eq. A12 are
not independent — either represents the solution. One of those equations determines the ratio of
A, and 4;. Normalizing the equation so that the maximum deflection is one completely
determines the constants.

For the centrally supported case, there are four arbitrary constants. Determination of the
constants proceeds as follows: (1) Set 4, to one. (2) Add the first two equations that result from
the matrix multiplication in Eq. A12 together. (3) Form the 3x3 system of equations from step 2
and the remaining two equations with the constants 4,-44 on one side. (4) Solve this
inhomogeneous equation system for 4,-44. (5) Normalize the result so that the maximum
deflection is one.
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Appendix B. Rayleigh-Ritz Approximation

Exact solution for the deflection function in the thin-plate approximation is straightforward as
long as the disk is uniform in composition and thickness. In practice, however, the ceramic in
most flexural disk transducers does not completely cover the substrate and this can have
important consequences especially with regard to inner-edge stresses and electric-field
breakdown. To anticipate the need to treat flexural-disk structures in which the ceramic only
partially covers the substrate, an approximate energy-based technique for finding the deflection
function is introduced in this second release. This solution is one of the Rayleigh-Ritz
techniques. In the polynomial form of the Rayleigh-Ritz technique, the deflection function is
assumed to have the form of a polynomial (normally with degree between two and ten). The
resonance frequency is computed from the strain energy and the kinetic energy and then the
resonance is minimized with respect to the coefficients of the polynomial. In this manner,
several solutions are produced. Each solution is an approximation for a mode; the lower the
mode, the better the approximation. Generally, the fundamental mode is approximated quite
closely while the highest modes are approximated poorly.

The starting point for the Rayleigh-Ritz technique is construction of a function that satisfies the
boundary conditions and that has a number of adjustable parameters. Then both the potential
energy and the kinetic energy are expressed in terms of this function. The resonance frequency
is obtained by setting the kinetic energy equal to the potential energy and solving for frequency.
Minimizing the frequency with respect to all of the adjustable parameters produces an
approximate solution for both the resonance frequencies and the mode shapes. One of the
simplest implementations for the Rayleigh-Ritz function is as a polynomial.

Application to transverse vibrations of a circular membrane

To illustrate the polynomial Rayleigh-Ritz solution, we will start with a simpler problem: axially
symmetric transverse vibrations of a circular membrane. After this introductory illustration, the
technique will be applied to flexural vibrations of a thin circular plate.

First, write the displacement of the membrane as a polynomial in the radial coordinate. Here, we
will use normalized forms. The variable, &, is the displacement divided by the peak
displacement (at the center of the membrane). The variable, 7, is the radial coordinate divided
by the radius of the membrane.

f(n) = a, + an + (12712 + a31‘)3 +...

The boundary conditions for the membrane are: (1) displacement equal to zero at the
circumference, and (2) slope equal to zero at the center:

E(1) = 0 and %(0) -0
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(Actually, the condition on the slope at the center is unnecessary. The accuracy of higher-order
modes is slightly better using both conditions.)

The slope is
iié = a + 2a,n + 3a,n* +...
dan
so we set
j’ﬁ =a =0
dn n=0
and
E(l) = ay +a +a, +a; +... =0
a = —-a, —a —a, -

Therefore, the normalized deflection can be written as follows:

Em) = -a +an’ - a + an’
-a, +an'-.
or
= a2(772 - 1) + a3(n3 - 1)

+a,(n* -1)+..
Notice that, in the second form, each term satisfies the boundary conditions.

For convenience, we change the indexing to 1 ... N and replace @+ by bp:

.é—g-_ ,—.N i )
dn_é "'Z:l( +1)bmn

The kinetic energy of the membrane is
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or, in terms of the normalized displacement,
l§
KE = o’w,, pnd tjéz ndn
0

The potential energy is equal to the work against the membrane tensile stress, 6. For an element,
dr, of the membrane, the unstretched length is dr while the stretched length is the square root of
dr* plus dw?. The elongation is the difference between these two lengths which, for small

deflection, is approximately
1 dwY
[ ££] ar
2( dr

The force against which this elongation takes place is the product of the tensile stress and the
area of the edge of the annular element of the membrane so

2
dPE = 27trt0'—l- ﬂ dr
2{ dr

The total potential energy (at maximum deflection) is then

i déjz
PE = w. ,mot||—=|ndn
peak ,(';(dn

If we define U and T as follows:
) l 2
U = f éﬁ] ndn ; T
o 9N
we can equate the kinetic and potential energies and solve for the frequency:

0w = 2 |Y
pa* | T

We can also define a normalized resonance frequency for membrane:

1

[ & ndn

[
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To find the minima with respect to b,

da* _ T(dU/db,) - U(dT/db,)

db T?

Set the numerator (divided by T) equal to zero:

w U
db,, T db,
which is the same as
dU , dT
—— — a —— 2
db, db,

This has the form of a matrix eigenvalue problem. In matrix terms, if B is a column vector of the
coefficients, b,,, then

A

T = B"TB
and

dT
db

m

=00 .. 10TB + B T[0 0 .. 1 0]

where the row vectors are zero except for a one in the m™ position. The column vector of the
derivatives is then

] - e e (@) - (fei)e

db,
Therefore,
T =T+ T
and similarly for U.
Since,
ij,.. , :b]; - ; b, x functions of n,m
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there are N equations each involving the N values of b,,:

(NxN)  (Nx1)

B -o°T-B =0

where
U,T = NXxN square matrices
and
b
B = 1|5 Nx1

The equations are homogeneous so solutions only exist for specific values (eigenvalues) of of:
(U-a’T)-B =0
Each o has an associated B (the eigenvector or column vector of b,,’s).

So & could be written as a diagonal matrix:

ol 0
(@] =| o
0 aiy
Since,
U-a’T=0
a*T=U

[az] = diagonalizationof T - U

If we calculate T™' .U, then a standard matrix eigenvalue solver can be used to find both the
eigenvalues and the eigenvectors.

Continuing the example of the membrane in tension, U and T are found as follows. The
integrand of the kinetic energy is

ézn = 2 2 bmbn(nmn _ 1) (nn+l — 1) n

m n

- 2 Z bm b,, [nm+n+3 _ nm+2 _ nn+2 _ n]
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Integrate to find T:

TS b 1111
pralii m+n+4 m+3 n+3 2
then differentiate with respect to by,

dT

11 1
” min+d m+3  n+3 2
The factors in square brackets are the matrix elements of T . Notice that T is symmetric

hence, when added to its transpose merely produces the leading factor of two; therefore, the
elements of T are two times the quantities in square brackets.

The integrand of the potential energy is

(Zf’} =Y Y b,b,(m+ 1) (n+ 1)p™

so integrate to find U:

(m+1)(n+1)
m+n+ 2

M%Tndn = X X b.b,

and differentiate,

=2Zb[m+l (n+l)}

m+n+ 2

where the factors in square brackets are the matrix elements of U .
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Application to transverse vibrations of a center-supported circular disk

For the centrally supported annular disk, the boundary conditions to be satisfied are for the
displacement and slope at the inner edge to be zero. In energy-minimization methods, it is not
necessary to satisfy explicitly conditions on moment or shear (at hinged or free boundaries, for
example)®'. The process of minimization automatically satisfies these conditions on derivatives
higher than the first. Note that in this section, b refers to the inner radius (the radius of the
clamp); it is not a polynomial coefficient.

The polynomial solution that satisfies the clamped inner-edge boundary conditions is
E = Ya, [17”’*‘ - (m+1)d"n + mb"’”]

The first and second derivatives are

% = Zam(m+1)[n”’ —b"']

2
Z—rﬁ = Zamm(m +l)77""l

We have already treated the normalization constants in the first release report so we need only
construct the mode shape using Rayleigh-Ritz. Once we have the normalized shape, we can use
the shape integrals previously derived to obtain the equivalent-circuit parameters and resonance
frequency. Consequently, to find the shape, we can ignore all leading factors and assume an
effective modulus and Poisson’s ratio for the composite disk.

Since
E
L = l_vz[Sl + VSz]
E
L, = ﬁ[sz + vS§]
the strain energy density is
1 1
Ugs = 5S1T1 + ESZTz
1 E
= Em[sf + S7 + 2vSlS2]

BIR. Weinstock, Calculus of Variations, Dover, NY, 1974, §7.7.

B-7
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Although this form is useable, it is commonly rearranged as follows:
1 E
Us = 57 [(S +5,) - 2(1—v)slsz]

Substituting for the strains,

2 B 7\2 »
U, = = Ev2 (w'+ﬁ) - 2(1-v)ww}

r r

2 2 2
_ oz E ld rivl _ 2(1__ )ldwdw
21-v rdr dr rdr dr

The integration over the volume of the composite disk produces several leading factors that can
be ignored. The integration over the radial coordinate is necessary to retain but all the shape
information is contained in the normalized forms. Therefore, let

where
d d&
Isum = - - T’ - n

R

(The notation of this last integral is consistent with that in the first report. I, is equal to the sum
of Ipo and Ipl )

and

£45 im
* dn

Each integral produces a matrix. The algebra is straightforward although, in some cases, tedious.
To illustrate, consider the integrand of I,

1 {dn (" %H = YYa.a,(m+1)(n+1)

n

l:(m+l)(n+1)n’"“'" =b"(n+)n"" - " (m+1)n"" 4+ b’? ]
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The integration produces the double sum of the product of a,,, a,, and the matrix elements of the
desired matrix:

U, (mn) = (m+1)(n+1).

(m+)(n+1) 0 mpay _mHL e mAL
[ ————(1-5""") — b7 (1-5") ——b" (1-57) = 57" Inb

In general, to produce the required matrices, we can take the complete factor that multiplies the
product of a,, and a, in the double summation, divide it by two and add it to its transpose. If the
factor is symmetric in m and n, though, this step is redundant.

The result for 7,

m+n n

I, = ZZama,,2n(m+1)(n+1)[l_bm+" - b"'(l—b"):l

is not symmetric in m and n so we would generate one matrix from half of the factor shown, then
add it to its transpose to find U,;. The complete matrix for potential energy for the disk is then

us=u, - (1-v)u,

The matrix for kinetic energy is found in similar fashion:

_ pmtn+d — pm+4
T(m,n) = L= _ (n + l)b"——-1 b
m+n+4 m+4
- m+3 _ pntd
A S PR Sl il
* m+3 n+4
—_ b X
s ma )+ )0 Ll mn b w4 ) 1—3—”_
— n+3 _ K2
+ mbm-HM__ + mnbm+n+2_l__b_
n+3 2

Once U and T have been found, the matrix eigenvalue/eigenfunction solver is used to find the
fundamental mode frequency and mode shape. Matrix eigenvalue solvers do not usually return
the results in order from lowest to highest mode; the smallest eigenvalue corresponds to the
fundamental mode. The MathCad rsort function is used so that both the eigenvalue matrix and
the eigenvector matrix can be sorted at the same time.

Once the mode shape has been found (that is, the polynomial coefficients have been determined
from the eigenvector values), the deflection can be normalized so that the maximum deflection is
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one for consistency with the first release. Then the other shape integrals can be calculated. If the
normalized polynomial coefficient matrix is C, then,

1
I, = I&’ndn = C"TC
b

psum = c'r Usum c
7, = C"U,C
Ip() = Ipsum - ]pl

As before, the shape integral associated with the effective area is

The shape integral associated with surface charge is

1 ’
Ip = I(é'+%)ndn - ¢a
b

where

Q(m) = (m+1)(1 - b")
and the shape integral associated with velocity is

1
I, = Zféndn = C"V
b

where

__pm+3 _ K3 _ K2
Vim) = 2|22 (e 28 4 e 128
m+3 3 2

For calculation of the deflection corresponding to maximum strain (see Section III), the
following definition is useful:

SM(m) = m(m + 1)b”"l
so that

£(b) = C"SM

B-10
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The matrix forms permit a cleaner program since U, T, Q, and V can be precomputed. Then the
shape integrals are simple matrix multiplications with the coefficient matrix, C.

Application to transverse vibrations of a edge-supported circular disk

For the edge-supported disk (with simply-supported outer edge), the necessary boundary
conditions are that the deflection be zero at the outer edge and that the slope be zero at the

center:

The normalized deflection function and its derivatives are then

E = Yb,(n - 1)
& = me(m + 1)n"
& = mem(m + 1)n"!
The required matrices are
2 2
U, (m,n) = (m +1) (n+1)
(m + n)
- n(m+1)(n + 1)
) , =
pl(m ) (m + n)
u, = Op, + 0‘;,
u-=u, - (1-v)u,
T(m,n) = ! - ! - I _ 1
m+n+ 4 m+3 n+3 2
Q(m) = m + 1
2
\") = -1
(m) m+ 3

and

SM(m) = m(m + 1)b™"'

B-11
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The formulation in this release is sufficiently general that the edge-supported structure can be
modeled either with or without a substrate. (Set the thickness of the substrate to zero in the latter
case.) The edge-supported structure is assumed to be two identical ceramic disks laminated to
each other or on opposite sides of a substrate disk.

B-12
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Appendix C. Arbitrary Location of Neutral Plane

While there is some logic in locating the neutral plane at the interface between the ceramic and
the substrate, this specific choice limits the design excessively. A module was added to compute
the location of the neutral plane for arbitrary thickness of ceramic and substrate (within the limits

of the thin-plate approximation).

The neutral plane can be found by minimizing the strain energy in the two-layer system. If the z-
coordinate is defined so that z = 0 is the location of the neutral plane, then the strain in the
system has the following relationship to the deflection, w:

2
S =S8, = —zd? = —zw'
dr
S, = S, = _zdw _ _zw
r dr r

SUBSTRATE

CENTER .
SUPPORT POST | -

Fig. C1. Center-supported flexural disk structure. In this view, the water would be on the upper
face and the lower face would contact a gas back-volume. For many practical transducers, the
structure would be doubled so as to have two structures back-to-back. The edges are nominally
free but would, in practice, be sealed with boots or bellows.

Let the ceramic be below the substrate and the ceramic thickness and substrate thickness be ¢.
and ¢ respectively (see Fig. C1). If the neutral plane is at z = 0 and we assume that the neutral
plane is in the substrate a distance z, from the interface (see Fig. C2), then the ceramic extends
fromz=-1.-2zy toz = - zp, and the substrate extends from z = - zy to z = £, - 2.
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-2y - tc

Fig. C2. Relationship of neutral plane (dash-dot line) to substrate/ceramic interface. The origin of
the z-coordinate system is taken to be at the neutral plane.

The strain energy density is

~ | S 1 1
Up = 38T = 28T + 551

since all stresses other than T, and 75 are zero.

The strain energy is the integral of the strain energy density over the entire structure. Integration
over r and @ produce factors that do not depend on the location of the neutral plane, so these
integrations do not need to be carried out explicitly. Since the faces of the ceramic are
electroded, the electric flux density, D, does not depend on z so we will use the basic equation:

T = ¢°§
which expands to

D D D
T S + oS, + oS,

) D D
T, = 8 + ¢S, + 38,
0

_ D D D
= S + S, + S

The last equation can be used to eliminate S3 from the first two to produce:

For convenience, redefine the quantities in parentheses as the effective constants, cc”:

D D
T, e, S + ey S,

Also,
I, = ccxg S+ ccﬁ A
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(Note: The cc coefficients can also be obtained by the matrix relations discussed previously.
While the forms are different —

b _ l/sﬂ
ey = D, D\2
1 - (slz/s“)
2
D /(D
D ~ S /(Sn)
cc, =

2
1 - (lez /sh )
the values are identical.

For an isotropic material, the Young’s modulus, E, is the reciprocal of s1; and the Poisson’s ratio,
v, is negative the ratio of 51 to s;;. This produces the usual forms for thin plates:

E vVE
L= qg0s oS

VE E
L= st T

It is useful to remember that, while T3 is assumed to be zero, S; is, in general, not zero.)
The strain energy density is then

~ cc
U, = —Z‘L(sf + S + 2vS.S,)
(We’ll drop the superscript, D, on cc so that we can use the superscript to differentiate between

the ceramic and the substrate.)

Actually, the strain energy also contains terms with the product of S and D. We will ignore these
terms with respect to locating the neutral plane. Because the stiffness of a piezoelectric material
depends on the electrical boundary conditions, the location of the neutral plane also must depend
on these conditions. For the present, this is presumed to be a small effect; however, if the
coupling factor is large, it may be necessary to modify this assumption. We can test the
assumption by calculating the neutral-plane location using both cc? and ccf coefficients.

Each of the terms in the strain energy density equation is the product of two strains.
Consequently, each term has as a factor z*. This 2* factor, ccyy, and v are the only quantities that
change with z (cc and v because the material changes in the thickness direction). We will
further assume that the Poisson’s ratios of the two materials are not radically different. We will
retain the dependence of cc on v but ignore the change in v as a factor of S,5,.
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Integration over » and @ produce factors that have no dependence on the location of the neutral
plane; these factors can be ignored in the energy minimization. Integration over z produces a
factor of z° times cc . Integration over the ceramic extends from z=-¢.-2zp toz=-2zpto
produce

e [(-2) = (=t = 2)]

while integration over the substrate extends from z = - zy to z = ¢, - 2y, producing

[t - ) - (-a)]

If we add these two expressions together (for the total strain energy), differentiate with respect to
2o, set equal to zero, and solve for zg, we obtain

ccit £ - e 8

S C

zZy = —
’ 2[ccf:’bt + ccf tc:'

3

This gives the location of the neutral plane in terms of the material properties and thicknesses for
the ceramic and substrate layers. If zg is negative, then the neutral plane is in the ceramic and a
hydrostatic load would put part of the ceramic in tension unless prestressed.
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Appendix D. Accounting for the Substrate

In the first release, the neutral plane was assumed to be at the interface between the ceramic and
the substrate and the substrate properties were taken to be identical to the ceramic properties.
This meant that only the ceramic needed to be analyzed. In subsequent releases, arbitrary
properties and thickness were permitted for the substrate. Consequently, the calculations in the
ceramic were modified (since the neutral plane is no longer, in general, at the inside face of the
ceramic and calculations in the substrate were added.

The primary difference in the mechanics of calculation is that the limits of integration in the z-
direction are no longer zero and 7. Integrations over thickness in the ceramic go from - zg - ¢, to
- 29 and integrations over thickness in the substrate go from - zg to ¢ - zp. Before, integrations of
S) or S, over the ceramic produced a factor of 7. / 2; now the same integrations produce a factor
of

where we have defined a constant, a.}, equal to the factor in square brackets. Similar integration
over the substrate produces a factor of

t_:[l R 2_] _ b,
2 t

s

If the integrations are of the squares of strains, then a factor of

2
5—[1 + 32 + %-} %—acz

2 t £

c c

is produced over the ceramic and a factor of

2

s s
1s produced over the substrate. (Notice the minus sign in this factor.)

Several quantities are unaffected by these changes. The blocked electrical capacitance is still

S 2
€€, Ma
t

c

Cp I,
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the effective area is

2

A = na l,

and the average face velocity is
V., = W0 L

avg 0 IA

The open-circuit voltage changes to
oc £
v = —w, hiy, -Ii - a,

A

The potential energy in the ceramic for short-circuit electrical conditions becomes

nt
3c acz[fnlpo + flzlpl:l

sc _ W
Ucer = T2

where

c2 c2

2 2
3 a 3 a
_ D S 112 1 ) _ D S 112 1
o= ey - Z EEy, hhy, ("c"} > fo = ccy - Z €€;; hhy, ("’c‘)
and the potential energy in the ceramic for open-circuit electrical conditions is
p gy p

U = US + %CB(V"C)Z

The potential energy in the substrate is

3
Wo nts sub sub
Uw = a_z 3 ) [Cn I, + ¢ Ipl]
where
sub i . sub v sub
I T ) =) sub Cl1

sub
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The total charge under short-circuit conditions is

N N
q = wy e hhy e a, 1,
and the kinetic energy is

KE = Wg ”az wz IKE [pc tc + ps ts]

The elements of the equivalent circuit are defined in the same way but have somewhat different
values. The equivalent mass is

2 2
_.—_%vle = 27ra2———1‘15"5 [p.t, + p,t]
avg

v

The equivalent stiffness is

k =

*U* 2 LA 4 ; » ,
= Al as[fidye + foly] + Ba,[cil, + 1
2 2 y2 ¢ “c2 11°p0 12 4 pl s 52 11 *p0 12 *pl
il vl L [ I}
where the potential energy is the sum of the energy in the ceramic and the energy in the
p gy . gy gy
substrate. The transduction factor is

sc I
aaq = meey hhy 1 a, L2
W,

avg v

The coupling factor is most easily calculated using the following form:

To estimate an upper limit to the transmitting voltage response, we assume operation at
resonance and assume that the mechanical loss in the transducer is much less than the radiation
resistance. Under these assumptions, the average face velocity is

<

v

n
avg

g

rad

where ¥, is the voltage applied to the electrical terminals and R,y is the radiation resistance.
The volume velocity can be computed from the effective area and the average face velocity.
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Then, using the simple-source radiation expression, the ratio of pressure at one meter to applied
voltage is

[
= natl, —
p. f "R

SN |"B

In writing this expression, we have assumed that the transducer consists of two flexural-disk
elements.
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Appendix E. Treatment of the Trilaminar Structure

Analysis of a trilaminar flexural-disk transducer (see Fig. E1) is a straightforward extension of
the two-layer transducer with arbitrary neutral plane. In the trilaminar transducer, the two
ceramic layers are assumed to have identical properties and dimensions so that the neutral plane
is midway through the substrate. If we take the origin of the z-coordinate system at the neutral
plane, then integrations through thickness of the ceramic go from z=-¢.-#/2 to z=- /2 and
integrations through the thickness of the substrate go from z = - £/2 to z= 0. The results are
then doubled to account for the symmetry of the structure about the neutral plane.

|
L

A

CENTER
SUPPORT POST

Fig. E1. Trilaminar center-supported flexural disk structure. The two ceramic layers are assumed
identical. The neutral plane is in the middle of the substrate.

If we define the substrate thickness variable, ¢ to be half the actual substrate thickness and let z,
be equal to - £, then we can use the integration-limit constants derived for the two-layer,
arbitrary neutral-plane formulation. We need only keep in mind that we are analyzing only half
of the transducer structure.

In equivalent-circuit modules, the following changes are made. The equivalent mass and
stiffness are both doubled. The coupling factor remains the same. The changes in other factors
depend on the electrical connection of the two ceramic layers. If the ceramic layers are
connected (electrically) in parallel, then the short-circuit charge, the blocked capacitance, and the
transduction factor are all doubled, while the open-circuit voltage remains the same. If the
ceramic layers are connected in series, then the short-circuit charge and the transduction factor
remain the same while the open-circuit voltage doubles and the blocked capacitance is reduce by
a factor of two. For this release version, the parallel electrical connection is assumed (but
conversion of the parameters for series connection is trivial).
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Appendix F. Stress Calculation and Interpretation

An important part of the design process is determination of the maximum source level achievable
from the transducer. One of the critical limits is stress in the ceramic. If the desired source level
is prescribed, then, the required volume velocity, O, can be determined:

- 2
¢ pf

where p is the desired acoustic pressure at one meter, p is the density of the fluid, and fis the
frequency.

Using the dimensions of the transducer and the volume factor from the shape integral, 7, the
peak deflection that would produce that volume velocity is,

_ Y

w = ——————————
peck 2nfna’

Then, having the peak deflection and the deflection shape, the stresses can be calculated. In this
second release, only the normalized stresses are calculated. The actual stresses can be calculated
manually as outlined above.

The radial and tangential strains are determined by the deflection function, w,

2
s = -4 . g = _Zdw

dr? rdr
The stresses can be determined from the following set of equations:

T, = cctS, + 28, - hh, D,
I, = ccg S, + ccﬁ S, — hh, D
E, = -hh, (Sl + Sz) + Bﬁssa D,

From the orientation of the electrodes, D; is constant in the 3-direction so we can integrate the
third equation over the thickness of the ceramic to find D; in terms of the strain and the voltage
on the electrodes.

The electrode voltage is calculated by integrating the electric field from one electrode to the
other. In most published analyses of piezoelectric transducers, the sign is handled incorrectly.
The voltage (electrical potential) is minus the integral of electric field. (The electric field is
minus the gradient of the potential.) For the purposes of analysis of transducer performance, this
error is generally inconsequential; it can be “rectified” simply by reversing the polarity of the
voltage terminals in the equivalent circuit. However, when analyzing stress and the coupling

F-1
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between mechanical and electrical properties, the sign is important. The first report did not
address this sign error. To avoid confusion in this second report, the terminal voltage will be
defined so that a positive voltage applied to the electrodes produces an electric field in the
positive 3-direction. With the coordinate definitions used so far, this means that the “ground”
terminal is the electrode between the substrate and the ceramic and the “positive” terminal is the
other electrode. If the terminal voltage is V,, then

-V, = -[E dz

where the integration is taken from the lower electrode to the upper electrode. Therefore,

~I
-V, = kb, [ (S, +S,)dz - BB D¢,

=%

Since
S +8S, = —z[w' + lv—)

the integration is straightforward:

r

v = %hh;,(w'+y-j(tf +2tczo) - BB Dyt

or

v,

!

BB 1.

D - hhy, (t, + 22z,) w'+il s
? 2BB3SJ r

The maximum stress in the ceramic is at the outer (lower) face where z = - ¢, — zg:

™ (2. + zo)(ccf,’ W+ l(:c,‘; w’] - hhy, D,
r

Z'VZmIX

(¢, + zo)(ccg W+ lccﬁ w') - hhy, D,
r

Inclusion of the D3 term in the stress calculation will be deferred to the next release so the
stresses calculated in the second release should be considered cautiously.

As an interim solution, the limiting performance can be developed in terms of maximum normal
strain. This is not the preferred criterion for failure of brittle material (maximum tensile stress is
the preferred limit) but it will serve as a rough approximation in this second release. For cases of
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practical interest, the maximum normal strain is equal to the radial strain at the inner edge (and
outer surface) of the disk:

d*w
dr?

5™ = S§(z = -t -z) = (¢, + z,)

It is simpler to normalize the deflection function, w, in the following manner,
E = wiw, s m = rla
where wy is the maximum value of the deflection (at the edge of the center-supported disk or at

the center of the edge-supported disk) and a is the disk radius. The maximum strain can then be
written

S = (14 2)280(0)

where the primes denote differentiation with respect to 7. If we specify a maximum strain value,
this expression permits us to find the corresponding peak deflection:

aZ Slmax

(2. + 2)&"(b)

Wy
(If we ignore the stress component related to Ds, we could find the peak deflection from a

maximum stress criterion. The first derivative of &is zero at 17 = b, so

aZ T;ma.x

ccl) (¢, + z,) &"(b)

max
Wy =

for maximum normal stress.)

Having the peak deflection, the radiated pressure can be found from the simple-source
approximation:

where the shape integrals, 7, and I, are defined in the next section;

max  __ max - 2 max
0 = Ve 4 = ma I vy
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and
p(im) = 2 pr o™

for the pressure at one meter (assuming the transducer contains two flexural disk elements).
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Appendix G: Relationship of Solutions to Reference 1

Some adjustment is necessary to compare results with Woollett®'. In that reference, the
deflection functions for the edge-supported cases are normalized so that the maximum deflection
is one; however, the deflection function for the center-supported case is not.

The normalized deflection function, & used here always has a maximum value of one. The
deflection function amplitude used in Ref. 1 is a;, where a; is one for the edge-supported cases
and a; is 0.369 for the center-supported case.

Several of the constants used in Ref. 1 are similar to the shape integrals used here:

e 4 ccf
K = 2a’I,
12
H = a,.2 ——V;
iy

Using these associations, the results from Ref. 1 can be compared to the present results by
replacing the passive substrate used here with another ceramic layer having the same properties
and dimensions as the first one. The comparisons are not exact because the basic deflection
functions are different.

GIR. S. Woollett, “Theory of the piezoelectric flexural disk transducer with applications to underwater sound,” USL
Research Report No. 490, U.S. Navy Underwater Sound Laboratory, December 5, 1960,
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Appendix H: MathCad Code Listing

The following modules are listed in this appendix. Please read the current FlexIntro file supplied
with the MathCad files for updated formats and program modules.

FlexIntro3_0.mcd

CC2L_3_0config.mcd
CC2L_3_0Odeflect.mcd
CC2L_3_0equivckt.mcd

CC3L_3_0config.mcd
CC3L_3_0Odeflect.mcd
CC3L_3_0equivckt.mcd

ES2L_3_0config.mcd
ES2L_3_0Odeflect.mcd
ES2L._3_0equivckt.mcd

ES3L_3_0Oconfig.mcd
ES3L_3_0deflect.mcd
ES3L_3_0equivckt.mcd

Performance3_0.mcd
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Flexural-Disk Transducer Analytical Model - DRAFT VERSION 3.0

Introduction

This mode! presents an analytical solution for the flexural-disk transducer in a manner similar to that
used by Woollett (Theory of the Piezoelectric Flexural Disk Transducer with Applications to Underwater
Sound, USL Report 490, December 5, 1960). The primary focus is on transmitting transducers with
center-supported disks but edge-supported disks and receiving performance will also be treated.

The three most apparent differences between this work and Woollett's report are: (1) higher-order
deflection functions are used to describe operation in the vicinity of resonance, (2) a non-zero diameter
center support is considered, and (3) arbitrary location of the neutral plane is permitted. Allowing a
non-zero center support diameter is critical in characterizing the stress distribution. Arbitrary location of
the neutral plane permits modeling of two-layer (ceramic/substrate) disks.

Users should be aware that this is a draft version rather than a fully validated production release.

Transducer Types

Four configurations of the flexural-disk transducer are analyzed. Two configurations are
center-supported. The first center-supported configuration consists of a single ceramic layer and a
substrate layer; the second consists of a substrate layer and two ceramic layers on either side of the
substrate. These configurations are shown below:
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Two configurations are edge-supported. The first edge-supported configuration consists of a single layer of
ceramic and a substrate layer; the second consists of a substrate layer and two ceramic layers on either
side of the substrate. In each case, the composite disk is simply supported at the edge:
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Third Release

In this third release, the elements in the two-layer structures are considered to be two-layer laminations
of ceramic and substrate with arbitrary properties and thicknesses. Consequently, the neutral plane is not
restricted to being located at the ceramic-substrate interface. Some caution must be exercised now in that
it is possible to put the neutral plane in the ceramic, which can cause failure under hydrostatic load if the
structure is not prestressed. Also, in this second release, an approximate method for calculating the mode
shape and shape integrals is used. Incorporation of this energy-based approximate method will eventually
permit modeling of structures in which the ceramic does not completely cover the substrate. Version 3.0
calculates the equivalent mechanical resistance and the dielectric loss as equivalent-circuit elements.

There are three important additions in version 3.0. First, the three-layer edge-supported disk structure is
treated (ES3Lxxx). Second, a feature has been added to the Performance Module that permits
incorporation of a fluid-filled cavity behind the flexural disk. Finally, physical units have been incorporated in
the Performance module. Since files do not preserve the units for quantities, the calculations in
Performance were done previously without units (but assuming SI units). In this version, the units are now
explicit (and Sl).

As in the previous version, this release is presented as a series of modules. This architecture is
described below and is convenient for exploring parameter variations.

Assumptions

A number of assumptions have been made in this version of the flexural disk model. Several of these
assumptions will be relaxed as the model is developed; some may be retained in order to preserve the
analytical nature of the model.

Thin-plate theory (plane stress; no shear)
Ceramic layer extends over entire diameter of disk structure

Simple assumed deflection functions are not used as there is no significant saving in computation nor is
there any reduction in the analytical nature of the model by using "exact" mode functions or mode functions
developed by Rayleigh-Ritz from higher order polynomials. When calculation of hydrostatic stresses are
added to the model, the exact static deflection will be used for the same reasons.

Organization

The naming convention for the modules is as follows. The first part of the name indicates the transducer
configuration. CC2L is the center-supported, two-layer configuration; CC3L is the center-supported,
three-layer configuration; ES2L is the edge-supported, two-layer configuration; and ES3L is the
edge-supported, three-layer configuration. For each transducer type, there are three modules and these are
indicated by the second part of the module name. The first module is the configuration module
(xxxx_config), the second (xxxx_deflect) is the module that finds the mode deflection function and the
shape integrals, while the third module (xxxx_equivckt) computes the equivalent-circuit parameters and
some of the important operating parameters.

Run one of the configuration modules (CC2L_config, CC3L_config, ES2L_config, or ES3L_config) first to
define the transducer configuration, the piezoelectric material, and the substrate material. Many of the
parameters subsequently calculated do not depend on specific dimensions. In those cases, dummy
dimensions can be entered. The first release retained sufficient flexibility to calculate impractical limiting
cases (such as the center-hole radius going to zero). Unrealistically small center radii should not be used
in this version.



The configuration module also reads the piezoelectric parameters and substrate properties from the
materials files and derives the necessary plane-stress forms of other parameters for subsequent
calculation. Manufacturers' tabulated values MUST NOT BE USED for the ¢ or h parameters or for the

clamped dielectric permittivity, 5. Tabulated values are not appropriate for 2D plane-stress problems.

Then run one of the deflection-function modules (CC2L._deflect, CC3L_deflect, ES2L_deflect, or
ES3L_deflect). This module finds the first mode eigenvalue and the corresponding deflection shape. Then
the so-called shape integrals -- factors that depend only on the shape of the deflection curve -- are
computed. The shape integrals are used in the calculation of equivalent-circuit parameters and other
performance parameters.

Finally, run the parameter module (CC2L_equivckt, CC3L_equivckt, ES2L_equivckt, or ES3L_equivckt)
to evaluate the equivalent-circuit parameters for the transducer configuration specified in the configuration
module. Once the equivalent-circuit parameters have been stored, Performance can be run to compute
admittance, TVR, TCR, and a few other operating properties. The inputs to set up the optional fluid-filled
cavity are entered in Performance.

File Structure
Piezoelectric materials files (PZT4.prn, PZT5H.prn, PZT8.prn):

Each piezoelectric material file contains seven values from various manufacturer data sheets. The seven
values are:

sly, b, [T/, dy OfEanl Qmech

Files for other materials can be generated easily. Create an ASCII file (use the extension .prn) with these
seven values entered on a single line separated by spaces. The values are stored in the file as they are
usually listed in properties tables: the compliances, s, in units of 10-12 m2/N; the dielectric permittivity as
relative dielectric permittivity; and the d coefficient in units of 10-12m/V. These values are the same for 3D
and 2D problems so they may be transcribed directly from manufacturer data sheets. The configuration
module reads these values and then multiplies the compliances and the d coefficient by 10-12 and
multiplies the relative dielectric permittivity by the permittivity of free space.

Substrate propetties files (brass.prn, aluminum.prn, steel.prn):

The substrate properties files each contain three values: the density in kg/m3, the elastic modulus in GPa,
and the Poisson's ratio. The user can generate other substrate files as ASCII files (with .prn extension) as
described above.

Configuration files (xxxx_config.prn):

The configuration files contain 15 values -- three dimensions and seven physical properties of the ceramic,
three properties and the thickness of the substrate, and the location of the neutral plane:

0, D
a bt Py Py hy By tanl Qmech pgy Egyy Ve tuo Zo




Units are not retained in the write operation so all values are converted to proper S| units before being
written. User input values can be entered in other systems as long as they are entered with those units. If
no units are specified, S| units will be assumed. The outer radius of the disk is a; the thickness is t;; and
the ratio of inner radius to outer radius is b. For the edge-supported disk, b is set to zero in the
configuration module. The density and the loss tangent are transferred directly from the properties file. The
stiffnesses, cD, the h coefficient, and the clamped permittivity are derived based on the plane-stress
assumption appropriate to the plate bending equations. These values will not compare to published values.

Shape files (xxxx_deflect.prn):

The shape files hold the values for the shape integrals; the peak deflection, wnmax, for unity strain; the
size, N, of the coefficient matrices; and the polynomial coefficient matrix, CC:

[ 1 lq f ke I wnmax N CC

p0
The shape integrals are functions only of the shape of the deflection function and so permit rather general
conclusions to be drawn about different configurations without substituting specific dimensions or physical
properties. Their value is not fully exploited by this initial draft. The first two, |5 and 1,4, are related to
elastic strain energy. The third, |, is related to the charge produced under strain. The fourth, |, relates the
average face velocity to the peak face velocity. The fifth, Ixg, is related to the kinetic energy. And the

sixth, |, is related to the active face area. The shape integrals and the configuration files are used to
compute the equivalent-circuit parameters and various performance measures. The peak deflection for unity
strain can be used to calculate performance limits (this is implemented in the third module for each
configuration). N and CC can be used to construct the actual deflection function.

Circuit parameter files (xxxx_equivckt.prn):

The equivalent-circuit parameter files hold the following values:
mass stiffnress 0 Cgg «? tand Rmech  r_rad m_rad  Aeff

These parameters are the equivalent mass and stiffness at resonance; the electromechanical transduction
factor, 0; the blocked electrical capacitance, Cgg; the coupling factor, 12; the loss tangent, tanll, of the
ceramic; and the equivalent mechanical resistance, Ry,qqp, Of the composite. The quantites, r_rad and
M_rad are the radiation resistance and radiation mass for the parallel equivalent for radiation impedance.
Aeff is the effective piston area.

Results

Mode deflection function

Basic energy quantities

Unloaded and loaded resonance frequency

Coupling factor

Equivalent-circuit parameters

Admittance (unloaded and loaded)

Transmitting voltage response (TVR)

Transmitting current response (TCR)

Low-frequency free-field voltage sensitivity (FFVS)
Calculation of maximum stress in ceramic and substrate
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Flexural-Disk Transducer Analytical Model - DRAFT VERSION 3.0

Module 1.CC2L config: Configuration Definition - Center-Supported Disk

This worksheet is specific to the annular (center-supported) disk. First, the physical dimensions are

specified and the piezoelectric properties file is read. Then, the two-dimensional properties are derived
Finally, the results are written to a configuration file.

< 3 |
b*a :

SUBSTRATE |

CERAMIC

CENTER
SUPPORT POST

|. SELECT MATERIALS

[Highlighted values are user inputs]

Choose from PZT4, PZT5H, or PZT8 for fite name in pzt READPRN.

pzt :=READPRN(PZT4)

1

= - - -12 1 _
sell »—pzto'O-IO o se12‘—pzto‘l-10 -I)—a €133 —pZto,z'EO
431 :=pzt_ 10720 oi=pzt K&
0.3 volt 0,4 . tand =pzty o Qmech =pzty ¢

Choose from steel, aluminum, or brass for file name in substrate READPRN.

substrate := READPRN( brass)

= substy kg
psub := substxateo,o-—3
m

psub =8.5:10° ~kg'm °

Esub := substrateO v 109-Pa vsub ;= substra\te0 5

Esub =1.04-10"! 'kg'm—l “sec 2 vsub =0.37




/. SELECT DIMENSIONS

Enter dimensions of ceramic disk (a = outside radius; bi = inner radius; tc = thickness)
and thickness (tsub) of substrate disk:

[Enter units for in, mm, cm, or m; if no units are entered, meters will be assumed]

a:=7-cm bi:=1-cm tc:=2.5-mm tsub :=4-mm b:i=—

a=0.07'm b =0.143 tc=2.510 ° *m

Ill. DERIVE PROPERTIES FOR TWO-DIMENSIONAL ANALYSIS

2 2
sd1l :=sell—d—3lw sd12:=se12—(—i-3-l— -Eﬁ=0,485
£t33 €t33 sdll
cdll ;:__Sdl_l_. cdlz;:_'sc_ii%_ ﬁ=0‘4g5
sd11% = sd12? sd11% - sd122 cdll
2.d31° d31
€s33 =¢et33 - ———— h31 :=
sell +sel2 €t33-(sdl1 + sd12)

IV. CALCULATE LOCATION OF NEUTRAL PLANE

Origin of z-coordinate at neutral plane; z0 gives distance from neutral plane to ceramic substrate
interface:

2 2
f = Esub 20 = tsub™fs — tc"-cdl1 20=7.605'10—4 ‘m

I - vsub? 2-(tsub-fs + tc-cdll)

WARNING: If z0 is negative, then the neutral plane is in ceramic and some part
of the ceramic will be in tension under hydrostatic load unless prestressed.

V. WRITE CONFIGURATION FILE

PRN files cannot handle dimensions so all quantities are written (in Sl) without units.

_p _a _ _ tc
out, ~=— out, . =— out, _:=b out, , \=—
0,0 pO 0,1 mo 0,2 0,3 mo
_cdll _cdl2 _h31 _€s33
out) ,i=——  out) ;:=—— outy o =—— uty = ——
’ c0 ’ c0 ’ h0 ’ e0
_ _ _ psub _ Esub
outy ¢ =tand outy 4 =Qmech outy g = —— out ==



. _tsub _z0
out0 12 ‘=vsub ou’tO 13T out =—
) ) mo

WRITEPRN(CC2L_config) :=out

The configuration file contains the following quantities in this order:

density of ceramic, p
outer radius of disk, a
ratio of inner radius to outer radius, b
thickness of ceramic, t
cd11 for ceramic
cd12 for ceramic
h31 for ceramic
€533 for ceramic
loss tangent for ceramic, tand
mechanical Q of ceramic
~ density of substrate, psub
modulus of substrate, Esub
poisson's ratio of substrate, vsub
thickness of substrate, tsub
z location of neutral plane, z0, with respect to bottom of ceramic

Unit normalization quantities (predefined):

00=1.X8 m0=1-m c0=1-Pa ho=1.Yo! e0=1.f2rad
m m m
£0=8.854.107 2. Lr2d

m
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Flexural-Disk Transducer Analytical Model - DRAFT VERSION 3.0

Module 2.CC2L deflect: Center-Supported Disk -- Clamped Inside

This worksheet reads the configuration file, calculates the first axisymmetric mode deflection function,
and then calculates all of the shape integrals. The shape integrals are written to a file for subsequent use.
In this version, the polynomial Rayleigh-Ritz method is used to compute the mode deflection function. An
eighth-order polynomial is used, which produces accurate results in all cases except unrealistically small
inner radii. This module is expecting the configuration file from version 2 -- that is, the configuration with
arbitrary location of the neutral plane and specific properties for the substrate.

|. READ CONFIGURATION FILE
(pc a b tc cdll cdl12 h31 es33 tand Qmech psub Esub vsub tsub z0):=READPRN(CC2L_config)

a=0.07 b =0.1429 tc =0.0025 ve f=—(ﬂ ve =0.485282

cdll
v :=0.5-(ve + vsub) v =0.427641

Il. MODE SOLUTION

In this section, the Rayleigh-Ritz technique is used to find the fundamental eigenvalue and eigenfunction for
an 8th order polynomial. (N is preset to 8 below.)

UU :=U(N,b,v) TT :=T(N,b,v)
gvals := genvals(UU, TT)
gvecs 1= genvees(UU, TT)

sgcomb =rsort (stack< gvalsT, gvecs) , 0>

fundval I=Js‘gcombo 0 fundval =4.692896

lll. FIND THE COEFFICIENTS FOR THE DEFLECTION FUNCTION
fundcoef := submatrix(sgcomb, 1,N,0,0)
CC :=scaledcoef{ fundcoef,N, b}

The coefficients are normalized so that the maximum deflection is one.




IV. PLOT THE NORMALIZED STRESSES

eta:=b,b + 0.002..1

RadialStress( eta, CC,N, b, v)

TangentialStress(eta, CC,N,b,v)

V. CALCULATE THE SHAPE INTEGRALS

Ike :=CCT-TT-CC Ike = 0.206775
la:=1-b Ta =0.97958
Iv:=CCT-VV(N,b) Iv = 0.569635
Iq:=CCT-QQ(N,b) Iq = 1.221375
Ipsum := CCT-Usum(N,b, v)-CC Ipsum =5.407692
Ipl:=cCT-UpI(N,b,v)-CC Ipl = 1.491756
Ip0 :=Ipsum - Ipl Ip0 =3.915936

The maximum strain is at the inner radius. The second derivative of the normalized deflection is
calculated below (maxcurve) and the peak deflection (i.e., deflection at r = a) corresponding to a strain of
one is saved (wnmax).

2

maxcurve 1= CCT-SM(N, b) wnmax ‘= a wnmax = 0.136099

(tc+ z0) -maxcurve,

Write shape-integral file:

WRITEPRN(CC2L _deflect) := [ Ip0. Ipl Iq, Iv, Ike, Ia wnmax N CC
PP Plo o Yo o

Because several of the shape integrals are calculated through matrix operations, they remain as
matrices even though having dimension 1x1. The subscript index is used to convert to scalar form before
writing. The deflection coefficients are written as a matrix (Nx1) as CC.




What follows are predefinitions...

N=8

scaledcoef( vect,N,b)=

for iie

incr— 1 - (ii+ 1)-b" +ii-b

peakdefl«— peakdefl + incr-vect,

vectscaled

Usum(N,b,v)= | for me 1..N

| ua

for ne 1..N

peakdefl—0

1.N
ii4-1

1

vect
peakdefl

vectscaled

1_ bm+n
ul—(m+ )(n+ 1)—-
m+n
n m
We--(n+ 1)-bm-Q+-(m.- 1)-b“-1 -b
n m

ua

m—1,n—

Upl(N,b,v)= | for me 1..N

ub

ubb

m-1l,n—

for ne 1..N

ube- ubb + ubbT

e (mt D+ 1-(ul 4 u2 5™ n())

1- ™" p™ (1 - b")

jen(n+ 1) (m+ 1) -

m+n n

U(N,b,v)= juue Usum(N,b,v) - (1 - v)-Upl(N,b,v)

uu

SM(N,b)= | for me 1..N

sm__ em(m+1)b"

sm



T(N,b,v)= | for me 1..N
for ne 1..N

_ m-n+44 _ m+4
1-b ,—(n+1)~b"-——1 b
m+n+4 m+ 4

tl

2nb"t! 157"
~nb " —--o—-(m+1)b
m+ 3 n+4

m-n 1-b*

m 1-p"t?

3
mtnyl 1-b

t3—(m+ 1)(n+1)b 3

-(2mn+m+n)b

3 2
dempm LI g2 120
n+3 2
tt a2t

tt

VV(N,b)= | for me 1..N

QQ(N,b)= | for me 1..N

matv e (m+ l)-(l - bm)

matv

slope(eta, vect,N,b) = | slope—0
for iie 1..N
slope«slope + vect, -(ii+ 1) (etaii— bii)

slope

curve(eta,vect,N,b)= | curve—0

for iie 1..N

curve«— curve + vect,. ]-(ii + 1)-i-eta" ™ !

curve

v-slope(eta, vect,N,b)

RadialStress(eta, vect, N, b, v) =curve(eta, vect,N,b) +
eta



TangentialStress(eta, vect,N, b, v) =v-curve(eta, vect,N,b) +

slope(eta, vect,N,b)

eta
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Module 3: Equivalent-Circuit Parameters - Bilaminar Flex Disks

This worksheet reads the configuration and shape-integral files for a particular case and computes the
equivalent-circuit parameters.

avg
§—— 1:0 «—
+C
R " R
o o — 1/k 7
CEB
- c I
Alternate form:
. <« |] Vavg
j —>»
+c m / [12 02
R _/
e RD —_— 02/k m _Zr_ad
C 02
EB
- c I

In these equivalent circuits, the mechanical quantities, force (pA or acoustic pressure times effective area)
and velocity, v, are related to the electrical quantities, voltage, e, and current, i. Cgg is the blocked
electrical capacitance and Rp is the dielectric loss (tand/w*Cgg). The mechanical mass, stiffness, and
mechanical damping are m, k, and R, respectively. The mechanical resistance is computed based on the
mechanical Q of the ceramic and the fraction of strain energy that is stored in the ceramic layer of the
composite. The radiation impedance, Zrad, is represented as a parallel combination of resistance and
mass (see below). Finally, the electromechanical transduction factor (the "turns ratio”) is ¢.

I. READ FILES

Read configuration file:
(pc a b tc cdll cdl2 h31 es33 tand Qmech psub Esub vsub tsub z0) :=READPRN(CC2L_config)

a=0.07 b =0.143 tc =2.5-10 °



Read shape-integral file:

(Ip0 Ipl Iq Iv lke Ia wnmax N CC):=READPRN(CC2L_deflect)

Aeff :=m-a’Ia Aeff =0.015
2 2
acl ::1+2-z—O ac2::1+3.2—0+3./2_0 asZ::1—3-2—0+3- 2
tc tc tc tsub tsub
/. CALCULATE EQUIVALENT-CIRCUIT PARAMETERS
Equivalent mass:
Ia® '
mass := 2-n'a2-Ike-—~-(pc'tc + psub-tsub) mass =0.998
v
Equivalent stiffness:
2 act? act?
fll:=cdll1- 0.75-es33-h31"—- £12 = cd12 - 0.75-es33-h31%.25
ac2 ac2
¢esll = .ﬂl_b.__
' 2 csl2 :=vsub-cstl
1 - vsub
Iff :=f11-Ip0 + f12-Ipt Iss =cs11-Ip0+ cs12:-Ipl
2 Ia® (3 3
stiffness :=——-—»(tc -ac2-Iff + tsub ~a52-Iss) stiffness =4.157-107
3% Iv
Transduction factor:
. Ia
¢=- n~h31-es33-1q4i—-tc~acl ¢ =0.392
v

Blocked electrical capacitance:

2
CER .= &833ma 1 CEB =4.766-10 °



Coupling factor:

v 2,3 qu act?
kf1 :=stiffness-— kf2 :=m-es33-h31%tc™ 2 ——
I 2 Ia 2
a a
= K2

Calculate equivalent Q for composite structure:

3
tSUb> as2 Iss Qeff :=Qmech-( 1 + Uratio)

Uratio := | —
ac2 Iff

tc
Rmech = st1ffness‘mass
mass Qeff

Calculate circuit elements for paraltel form of radiation impedance. This form is preferred over the
series form since, in the parallel form, the resistance element is frequency independent. Furthermore, the
parallel form degrades more gracefully for ka approaching (or greater than) one. Also, the assumption is
made that these transducer elements would always be used in pairs placed back-to-back and driven in
phase. In this drive mode, the radiation impedance is equivalent to that of a single element in an infinite
rigid baffle.

- 1

Zrad Rrad Miag
p_water := 1000 c_water := 1500
m_rad ::—8—- p_water-a- (n-az)-la R_rad :=1.44-p_water-c_water (n-az)-la
3n

Write equivalent-circuit parameters to a file:

WRITEPRN(CC2L _equivckt) :=(mass stiffness ¢ CEB k2 tand Rmech R_rad m_rad Aeff)




1. MISCELLANEOUS CALCULATIONS

Unloaded resonance frequency:

mech_res :=-—1—- stiffness mech_res =1.027* 103

2m mass

Rough estimate of water loading (piston with uniform face velocity):

rad_mass := i~vp_water-1t-aB-Ia w2water .= ﬂfﬁs— p-watera _ 1.842
3. mass + rad_mass pc-2-tc

mech_res_water = -l— w2water mech_res_water = 745.628

21
wavenum ‘= 2-Tmech_res_water ka :=wavenum-a ka =0.219

c_water

2 ka2
radR := p_water-c_water-m-a”Ja-— radR =540.586
2

Estimated maximum source level (if strain limited):

[Note: Maximum strain is not an appropriate failure criterion for a ceramic material. It is used in this
draft version as a crude estimate of limiting performance. Eventually, the more appropriate maximum
tensile stress criterion will be implemented. The often-used von Mises stress criterion is also inappropriate

for failure in ceramic.}

Enter maximum allowable strain Smax :=0.001

. 2
Qmax :=m-a”-2-w-mech_res_water- wnmax-Smax-Iv

pl .= p_water-mech_res_water-Qmax SL :=20-log(pl) + 120
Maximum pressure at 1 meter (Pa): pl =4.169 10°
Maximum SL in dB with respect to 1 micropascal at one meter: SL=1924

Estimated peak TVR:

What follows is an optimistic estimate of the peak transmitting voltage response; mechanical loss
in the ceramic is ignored.

¢

tvr_peak := p_water-mech_res_water-7- az- Ja——
radR

TVR in pascals at one meter per volt input: tvr_peak =8.159

TVR in dB with respect to 1 micropascal at one meter per volt:  20-log( |tvr_peak| ) + 120 =138.2



Low-frequency receive response:

The receiving response is not normally important but can be useful in reciprocity calculations.

matla 1
ffvs = /
; CEB-stiffness
Ly
o
FFVS in open-circuit volts per pascal: ffvs =2.771°10 °
FFVS in dB with respect to one volt per micropascal: 20-log( |ffvs| ) - 120 =-171.1

The quantity in square brackets in the equation for ffvs should equal 02

1
CEB-stiffness
1+ -,

¢

=0.072 k2 =0.072
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Flexural-Disk Transducer Analytical Model - DRAFT VERSION 3.0

Module 1.CC3L config: Configuration Definition - Center-Supported Trilaminar
Disk

This worksheet is specific to the annular (center-supported) disk. First, the physical dimensions are
specified and the piezoelectric properties file is read. Then, the two-dimensional properties are derived.
Finally, the results are written to a configuration file.

l ]

a

b*a

CERAMIC

CERAMIC

CENTER
SUPPORT POST

|. SELECT MATERIALS [Highlighted values are user inputs]

Choose from PZT4, PZT5H, or PZT8 for file name in pzt READPRN.

pzt := READPRN(PZT4)

. _12 1 . 212 1 -
sell ‘_pno,o’lo .g sel2 ‘_pZto,l'lo -g €t33 .—pzto‘z.eO
d31 :=pzt qo 2 =pzt ke tand = pzt Qmech := pzt
=Py 5 oIt P =Pty 4 “PZys P
m

Choose from steel, aluminum, or brass for file name in substrate READPRN.

substrate := READPRN(brass)

k
psub := substrate, 0~—§3 Esub :=substrate - 10°-Pa vsub := substrate
m )

psub =8.510° *kg'm ° Esub =1.04:10'" -kg'm '-sec vsub =0.37




Il. SELECT DIMENSIONS

Enter dimensions of ceramic disks (a = outside radius; bi = inner radius; tc = thickness)
and thickness (tsub) of substrate disk:

a ' =4.0'in

NOTE: For the trilaminar configuration it is assumed that the two ceramic disks are identical.

a=0.102'm

bi :=0.25-in

b =0.063

tc:=0.10:in

tsub :=0.10-in b:

tc=2.54'10 ° *m

Ill. DERIVE PROPERTIES FOR TWO-DIMENSIONAL ANALYSIS

2
sdll ::sell—ﬂ
et33
cdl =41t
sd112- sd12?
2
€s33 = ¢et33 - —:)'49—31“_
sell +sel2

2
sd12 :=se12—ﬂ
et33
cdl?2 ::_;(112__
sd11% - sd12?
h31 = d31

£t33-(sd11 + sd12)

IV. WRITE CONFIGURATION FILE

sd12

[Enter units for in, mm, cm, or m; if no units are entered, meters will be assumed]

ts2 = __tsub
2

-—— =0.485

sdl1

cdl12

—— =0485

cdll

PRN files cannot handle dimensions so all quantities are written (in SI) without units.

out, =2
£ pO
out. = cdll
0,4 CO
Outo,s = tand
outo,l2 :=vsub

out

09" Qmech

WRITEPRN(CC3L_config) :=out

out = 1¢
03 mo
_€s33
Out0 7=
’ el
out _Esub
0,11 0



The configuration file contains the following quantities in this order:

density of ceramic, p

outer radius of disk, a

ratio of inner radius to outer radius, b
thickness of ceramic, t

cd11 for ceramic

cd12 for ceramic

h31 for ceramic

£s33 for ceramic

loss tangent for ceramic, tand
mechanical Q of ceramic

density of substrate, psub

modulus of substrate, Esub
poisson's ratio of substrate, vsub
half thickness of substrate, ts2
location of neutral plane (same as half substrate thickness)

Unit normalization quantities (predefined):

00=1.X8 m0=1-m c0=1-Pa ho=1.Yol ¢0=1.farad
m m m
¢0=8.854.107'2.fa2d

m
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Module 2.CC3L deflect: Center-Supported Trilaminar Disk -- Clamped Inside

This worksheet reads the configuration file, calculates the first axisymmetric mode deflection function,
and then calculates all of the shape integrals. The shape integrals are written to a file for subsequent use.
In this version, the polynomial Rayleigh-Ritz method is used to compute the mode deflection function. An
eighth-order polynomial is used, which produces accurate results in all cases except unrealistically small
inner radii. This module is expecting the configuration file from version 2 -- that is, the configuration with
arbitrary location of the neutral plane and specific properties for the substrate.

|. READ CONFIGURATION FILE
(pc 2 b tc cdll cdl2 h3l €s33 tand Qmech psub Esub vsub tsub z0) :=READPRN(CC3L_config)

:cd12
cdl1

a=0.1016 b =0.0625 tc =0.00254 ve ! ve =0.485282
v:=0.5-(ve + vsub) v=0.427641
/l. MODE SOLUTION

In this section, the Rayleigh-Ritz technique is used to find the fundamental eigenvalue and eigenfunction for
an 8th order polynomial. (N is preset to 8 below.)

UU :=U(N,b,v) TT :=T(N,b,v)
gvals := genvals(UU, TT)

gvecs = genvecs(UU,TT)

sgecomb = rsort<stack <gvaIsT, gvecs) , 0)

fundval := fsgcomb0 0 fundval =4.078196

ll. FIND THE COEFFICIENTS FOR THE DEFLECTION FUNCTION
fundcoef : = submatrix(sgcomb, 1,N,0,0)
CC :=scaledcoef( fundcoef,N,b)

The coefficients are normalized so that the maximum deflection is one.




IV. PLOT THE NORMALIZED STRESSES

eta:=b,b+0.002..1

RadialStress( eta, CC,N,b,v)

TangentialStress(eta, CC,N,b,v)

V. CALCULATE THE SHAPE INTEGRALS

Ike :=CCT-TT-CC Ike =0.225435
la:=1- b’ la =0.996094
Iv:=CCT-VV(N,b) Iv=0.611179
Iq:=CCT-QQ(N,b) Iq = 1.076708
Ipsum := CC"-Usum(N, b, v)-CC Ipsum =4.412892
Ip1:=CCT-UpI(N,b,v)-CC Ipl =1.1593

Ip0 :=Ipsum - Ip! Ip0 =3.253593

The maximum strain is at the inner radius. The second derivative of the normalized deflection is
calculated below (maxcurve) and the peak deflection (i.e., deflection at r = a) corresponding to a strain of
one is saved (wnmax).

2

maxcurve = CCT~SM(N,b) wnmax = a wnmax = 0.230222

(tc+ z0)-maxcurve,

Write shape-integral file:

WRITEPRN(CC3L~deﬂect)::/ Ip0, Ipl, Iq, Iv, lke, Ia wnmax N CC
(‘P *Plo o Yo %

Because several of the shape integrals are calculated through matrix operations, they remain as
matrices even though having dimension 1x1. The subscript index is used to convert to scalar form before
writing. The deflection coefficients are written as a matrix (Nx1) as CC.

What follows are predefinitions...




N=8

scaledcoef( vect,N,b) =

peakdefl—0
for iie 1..N
incre 1 — (i + 1)+ ii-b" T

peakdefle peakdefl + incr-vect, |

vectscalede— veet
peakdefl
vectscaled
Usum(N,b,v)= | for me 1..N
for ne 1..N
1_ bm+n
ule(m+ 1) (n+1)——
m+n
n m
We-(n+ 1)-b"\1 -b +-(m= 1)-b“-l -b
n
ua, g y—(m+1)(n+ 1)-(ul +u2 + —bm+n-1n(b))
ua
Upl(N,b,v)= | for me 1..N
for ne 1..N
L-b™ " p™ {1 - b")
ubbm_l,n_]e—n-(n+l)-(m+l)-' T - "
ube—ubb + ubb’
ub

U(N,b,v)= Juue Usum(N,b,v) - (1 - v)-Upl(N,b,v)

uu

SM(N,b)= | for me 1

smm_ 1

sm

.N

em(m+1)b™!




T(N,b,v)= | for me 1..N

for ne 1..N
_ m-+n+4 _ m+-4
tlb_l__i_____ (n+ 1).b".1__b_
m+n=+4 m+ 4
_ m+3 _ n+4
tz(_n.b““.l__b___ (m+ 1).bm._1___£__
m+3 n+4

4

B ) m+n+ll~b3
t3—(m+ 1)(n+1)b ————=(2'mn+m+n)b —3—
_ n43 _ 2
t4<__m.bm+l._1_.l2___+m.n.bm+n+2._l._k2_
n+3 2
ttm_l,n—l(_tl+t2+t3""t4
tt
VV(N,b)=| for me 1..N
m+3 3 2
matv_ ﬂ____(m‘_ 1).&".2 +m.bm+l.Q
m- m+3 3 2
2-matv

QQ(N,b)= | for me 1..N

{
matv  —(m+ 1)1~ bm>

matv

slope(eta, vect,N,b)= | slope— 0
for iie 1..N
slope« slope + vect, Qi+ 1) (etaii— bii)

slope

curve(eta,vect,N,b)= {curve—0

for iie 1..N

. e fi—1
curve«- curve + vect, (ii + 1 )-ii-eta”

curve

v-slope(eta, vect,N, b)

RadialStress(eta, vect, N, b, v) =curve(eta, vect,N,b) +
eta

slope(eta, vect,N,b)

TangentialStress(eta, vect,N, b, v) =v-curve(eta, vect,N,b) +
eta
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Module 3: Equivalent-Circuit Parameters -- Trilaminar Flex Disks

This worksheet reads the configuration and shape-integral files for a particular case and computes the
equivalent-circuit parameters.

avg
| —— 1:100 <
+C
R " R
rad
CEB
- cﬁ I
Alternate form:
€« v,
j ——> |
+c m /02 /02
R
o RD —— []2 | k m Zrad
C 02
EB
- C I

In these equivalent circuits, the mechanical quantities, force (pA or acoustic pressure times effective area)
and velocity, v, are related to the electrical quantities, voltage, e, and current, i. Cgg is the blocked
electrical capacitance and Ry is the dielectric loss (tand/w*Cgg). The mechanical mass, stiffness, and
mechanical damping are m, k, and R, respectively. The mechanical resistance is computed based on the
mechanical Q of the ceramic and the fraction of strain energy that is stored in the ceramic layer of the
composite. The radiation impedance, Zrad, is represented as a parallel combination of resistance and
mass (see below). Finally, the electromechanical transduction factor (the "turns ratio") is ¢.

|. READ FILES
Read configuration file:
(pc a b tc cdil cdl2 h31 es33 tand Qmech psub Esub vsub tsub z0) :=READPRN(CC3L_config)

a=0.102 b =0.063 tc =2.54-10 °



Read shape-integral file:

(Ip0 Ipl Iq Iv ke Ia wnmax N CC):=READPRN(CC3L_deflect)

2
acl =1+ 2.2 2211320 3.2
tc tc
Aeff :=m-a>Ia Aeff =0.032

tc

2
as2:=1- 3'—2—0——1-3- —EQ-
tsub tsub

Il. CALCULATE EQUIVALENT-CIRCUIT PARAMETERS

Equivalent mass:
2 Ia
mass :=4-7-a 'Ike-——2-(pc~tc + psub-tsub)
Iv

Equivalent stiffness:

2

£11:=cdl1 - 0.75-es33-h312.2L
ac2

CSll ;:__I::ﬂb__

1 - vsub’

Iff := f11-Ip0 + f12Ip1

mass =2.338

2
£12 1= cd12 - 0.75-es33-h312.25L
ac2

cs12 :=vsub-cstl
Iss =csll-Ip0+ csl12-Ipl

stiffness =2.056+ 10

Transduction factor for parallel connection of ceramic layers:

¢:=-2 n~h31-8533-lq-i—"1—~tc-acl
v

¢ =0.828

Blocked electrical capacitance for parallel connection of ceramic layers:

CEB =2.01-10 '

Coupling factor (for parallel connection of ceramic layers):

2

Kf1 := stiffness
2
Ia

3_qu'ac12

kf2 :=2.-mes33h31 %421

la 4



K2 ':__k_fz_
' kfl + kf2 K2 =0.142

Calculate equivalent Q for composite structure:

Qeff .= Qmech-(1 + Uratio)

Uratio :=
tc

ac2 Iff

Rmech := stxffness'mass
mass Qeff

Calculate circuit elements for parallel form of radiation impedance. This form is preferred over the
series form since, in the parallel form, the resistance element is frequency independent. Furthermore, the
parallel form degrades more gracefully for ka approaching (or greater than) one. Also, the assumption is
made that these transducer elements would always be used in pairs placed back-to-back and driven in

phase. In this drive mode, the radiation impedance is equivalent to that of a single element in an infinite
rigid baffle.

- 1

Zrad rad Miaq
p_water := 1000 ¢_water := 1500
m_rad 22—8--p_water-a' (n-a2>-la R_rad :=1.44-p_water-c_water (n-az)‘la

3n

Write equivalent-circuit parameters to a file:

WRITEPRN(CC3L _equivckt) :=(mass stiffness ¢ CEB x2 tand Rmech R_rad m_rad Aeff)

Hl. MISCELLANEQUS CALCULATIONS
Unloaded resonance frequency:

1 |stiffness
mech_res (= —-

27 mass

mech_res =471.953

Rough estimate of water loading (piston with uniform face velocity):



stiffness p_water-a

rad_mass := —8—-p__water-1'c-a3-Ia w2water | = ——0 4 ———————— =2.632
3. mass + rad_mass pc-2-tc

mech_res_water = —l— w2water mech_res_water =318.803

21
wavenum = 2-mmech,_res_water ka :=wavenum-a ka =0.136

c_water

2 l(a2

radR .= p_water-c_water-n-a ~Ia-7 radR =445.971

Estimated maximum source level (if strain limited):

[Note: Maximum strain is not an appropriate failure criterion for a ceramic material. It is used in this
draft version as a crude estimate of limiting performance. Eventually, the more appropriate maximum
tensile stress criterion will be implemented. The often-used von Mises stress criterion is also inappropriate
for failure in ceramic.]

Enter maximum allowable strain Smax :=0.001

2
Qmax =7m-a -2--mech_res_water-wnmax-Smax-Iv

pl := p_water-mech_res_water-Qmax SL :=20-log(pt) + 120
Maximum pressure at 1 meter (Pa): pl =2.914 10°
Maximum SL in dB with respect to 1 micropascal at one meter: SL =189.3

Estimated peak TVR:

What follows is an optimistic estimate of the peak transmitting voltage response; mechanical loss
in the ceramic is ignored.

¢

tvr_peak := pﬂwater-mech_res_water~n-a2-la~——
radR

TVR in pascals at one meter per volt input: tvr_peak =19.122

TVR in dB with respect to 1 micropascal at one meter per volt: 20-log( |tvr_peak| ) + 120 =145.6




Low-frequency receive response:

The receiving response is not normally important but can be useful in reciprocity calculations.

2
ffvs T la 1
¢ CEB-stiffness
L ———
¢
FFVS in open-circuit volts per pascal: ffvs =5.552:10 °
FFVS in dB with respect to one volt per micropascal: 20-log( | ftvs| ) - 120 =-165.1

The quantity in square brackets in the equation for ffvs should equal 02

1

CEB-stiffness
1+ -

¢

=0.142 k2 =0.142
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Module 1.ES2L_config: Configuration Definition - Edge-Supported Disk

This worksheet is specific to the bilaminar edge-supported disk. First, the physical dimensions are
specified and the piezoelectric properties file is read. Then, the two-dimensional properties are derived.
Finally, the results are written to a configuration file.

CERAMIC
SUBSTRATE
HINGED EDGE . t,
SUPPORT
|. SELECT MATERIALS [Highlighted values are user inputs]

Choose from PZT4, PZTSH, or PZT8 for file name in pzt READPRN.

pzt := READPRN(PZT4)

. 212 1 - 212 1 _
sell ‘—pztoyo-lo -——Pa sel2 .—pzto’l~10 -—P—a €t33 —pzto’z-so
d31 :=pzt o2 p=pzt kg - N
0,3 volt 0,4 3 tand .-pzto’5 Qmech .—pzto,6

Choose from steel, aluminum, or brass for file name in substrate READPRN.

substrate := READPRN(brass)

psub := substrate, 0-553- Esub := substrate - 10°-Pa vsub :=substrate ,

m

psub =8.5:10° *kg'm ° Esub =1.04-10'" “kg'm ' *sec 2 vsub =0.37



Il. SELECT DIMENSIONS

Enter dimensions of ceramic disk (a = outside radius; tc = thickness)
and thickness (tsub) of substrate disk: '

[Enter units for in, mm, cm, or m; if no units are entered, meters will be assumed)]

a:=10-cm tc :=0.1'mm tsub:=1-cm b:=0

a=0.1m b=0 te=1:10"% *m

Ill. DERIVE PROPERTIES FOR TWO-DIMENSIONAL ANALYSIS

2 2
sdl1 :=se11--(-13—1— sd12:=sel2—-@~ -id—12—=0.485
et33 £t33 sdil
cdil =S4 cdigi=—-412 12 _ 0485
sdi1? - sd12? sd112 - sd122 cd1l
2-d31° d31
€833 =et33 - —4m48M8M8 h31 =
sell +sel2 €t33-(sdll + sd12)

IV. CALCULATE LOCATION OF NEUTRAL PLANE

Origin of z-coordinate at neutral plane; z0 gives distance from neutral plane to ceramic substrate
interface:

Esub _ tsubz-fs— tc?-cdll

fs iz z0 =
] - vsub® 2-(tsub-fs + tc-cd11)

20=4.951-10 ° *m

WARNING: If z0 is negative, then the neutral plane is in ceramic and some part
of the ceramic will be in tension under hydrostatic load unless prestressed.

V. WRITE CONFIGURATION FILE

PRN files cannot handle dimensions so all quantities are written (in SI) without units.

- P .. a o _ tc
out =— out, = T— out, ., :=b out, , i =—
0,0 00 0.1 o 0,2 03" o
ou _cdll out. = cd12 ‘ _h31 o £s33
0,47 0,5 o 0.6 1o 0.7 ¢
— L ._psub _Esub
out, ¢ =tand outy 4 .= Qmech outy 1y = —— out =



p051~k—g3 m0=1-m c0=1-Pa hO0=1-—

€0=8.854-10

WRITEPRN(ES2L_config) :=out

The configuration file contains the following quantities in this order:

density of ceramic, p

outer radius of disk, a

ratio of inner radius to outer radius, b (always zero here)
thickness of ceramic, tc

cd11 for ceramic

¢d12 for ceramic

h31 for ceramic

£33 for ceramic

loss tangent for ceramic, tand

mechanical Q of ceramic

density of substrate, psub

modulus of substrate, Esub

poisson's ratio of substrate, vsub

thickness of substrate, tsub

z location of neutral plane, 0, with respect to bottom of ceramic

Unit normalization quantities (predefined).

volt

m

_ lz'farad

m

el=1-

farad
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Module 2.ES2L deflect: Edge-Supported Disk

This worksheet reads the configuration file, calculates the first axisymmetric mode deflection function,
and then calculates all of the shape integrals. The shape integrals are written to a file for subsequent use.
In this version, the polynomial Rayleigh-Ritz method is used to compute the mode deflection function. An
eighth-order polynomial is used. This module is expecting the configuration file from version 2 -- that is, the
configuration with arbitrary location of the neutral plane and specific properties for the substrate.

I. READ CONFIGURATION FILE

(pc a b tc cdll cdl2 h31 €s33 tand Qmech psub Esub vsub tsub z0) :=READPRN(ES2L_config)

_cdl2
cdll

a=0.1 b=0 tc =0.0001 ve =0.485282

v :=0.5-(vc+ vsub) v =0.427641

/. MODE SOLUTION

In this section, the Rayleigh-Ritz technique is used to find the fundamental eigenvalue and eigenfunction for
an 8th order polynomial. (N is preset to 8 below.)

UU :=U(N,b,v) TT :=T(N,b,v)
gvals := genvals(UU,TT)

gvecs = genvecs(UU, TT)

sgcomb = rsort(stack (gvalsT, gvecs> ) O>

fundval = /sgcombo 0 fundval =5.116155

lll. FIND THE COEFFICIENTS FOR THE DEFLECTION FUNCTION
fundcoef := submatrix(sgcomb, 1,N,0,0)
CC :=scaledcoef( fundcoef,N, b)

The coefficients are normalized so that the maximum deflection is one.



IV. PLOT THE NORMALIZED STRESSES

eta:=b,b+0.002.. 1

RadialStress( eta, CC,N, b, v)

TangentialStress( eta, CC,N, b, v)

eta

V. CALCULATE THE SHAPE INTEGRALS

Ike :=CCT-TT-CC Tke = 0.140926
la:=1- b2 la=1
Iv:=CCT-VV(N,b) Iv = 0.445882
Iq:=CCT-QQ(N,b) Iq =1.401826
Ipsum := CC"-Usum(N, b, v)-CC Ipsum =4.813486
Ipl :=cCT-UpI(N,b,v)-CC Ipl =1.965116
Ip0 :=Ipsum ~ Ipl Ip0 =2.84837

The maximum strain is at the inner radius. The second derivative of the normalized deflection is
calculated below (maxcurve) and the peak deflection (i.e., deflection at r = a) corresponding to a strain of
one is saved (wnmax).

maxcurve = CCT'SM(N, b) wnmax = a wnmax =0.732203

(tc + z0)-maxcurve,

Write shape-integral file:

WRITEPRN(ES2L_deflect) := (Ip0, Ipl, Iq, Iv, Ike, Ia wnmax N CC
0 0 0 0 0

Because several of the shape integrals are calculated through matrix operations, they remain as
matrices even though having dimension 1x1. The subscript index is used to convert to scalar form before
writing. The coefficients are written as a matrix (Nx1) as CC.

What follows are predefinitions...




N=8

scaledcoef( vect,N,b) = | peakdefl—0
for iie 1..N

peakdefl— peakdefl + vect,

vect
peakdefl

vectscaled—

vectscaled

Usum(N,b,v)= | for me 1..N
for ne 1..N

(_(m+1)2-(n+1)2
m-n

U o1

ua

Upl(N,b,v)=| for me 1..N
for ne 1..N

ubb 6_n~(n+1)~(m+l)

m-1i,n-1 m+n

ubs- ubb - ubb "
ub

U(N,b,v)= fuue— Usum(N,b,v) - (1 - v)-Upl(N,b,v)

uu

SM(N,b)= | for me 2..N

sm —0
m—1
smo<——2

Sm



T(N,b,v)= | for me 1..N
for ne 1..N
1 1 1

m+n+4 m+3 n+3 2

tt

m—1,n— le—

VV(N,b)= | for me 1..N

2
matv ]¢—1_
m= m+ 3
matv
QQ(N,b)= | for me 1..N
matvm_ l<—~(m 1)

matv

slope(eta, vect,N,b) = | slope—0
for iie 1..N
slope« slope 1 vect,, (i I)~etaii

slope

curve(eta,vect,N,b)= | curve—0

for iie 1..N

. . ii—1
curvee curve + vect,, I-(n + l)-11-eta"

curve

v-slope(eta, vect,N,b)

RadialStress(eta, vect,N,b, v) =curve(eta, vect,N,b) +
eta

slope(eta, vect,N,b)

TangentialStress(eta, vect,N,b,v) =v-curve(eta, vect,N,b) +
eta
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Module 3: Equivalent-Circuit - Bilaminar, Edge-Supported Flex Disks

This worksheet reads the configuration and shape-integral files for a particular case and computes the
equivalent-circuit parameters.

Vavg
ey 1:0 «—
+C
R " R
e ° —T 1 k Zrad
CEB
- C l
Alternate form:
. € [ Vavg
j —>
+C m / [2 R_/[2
o RD —1— D2 | Kk m Zrad
C 2
EB
- c I

in these equivalent circuits, the mechanical quantities, force (pA or acoustic pressure times effective area)
and velocity, v, are related to the electrical quantities, voltage, e, and current, i. Cgg is the blocked
electrical capacitance and Ry is the dielectric loss (tand/w*Cgg). The mechanical mass, stiffness, and
mechanical damping are m, k, and R, respectively. The mechanical resistance is computed based on the
mechanical Q of the ceramic and the fraction of strain energy that is stored in the ceramic layer of the
composite. The radiation impedance, Zrad, is represented as a parallel combination of resistance and
mass (see below). Finally, the electromechanical transduction factor (the "turns ratio”) is ¢.

I. READ FILES

Read configuration file:

(pc a b tc cdll cdi2 h3l es33 tand Qmech psub Esub vsub tsub z0):= READPRN(ES2L_config)

a=0.1 b=0 tc=1-10 *



Read shape-integral file:

(Ip0 Ipl Iq Iv lke Ia wnmax N CC) :=READPRN(ES2L_deflect)

2 2
acl:zl-i—Z-EQ ac2 :=1+3-Z—O-'—3~(z—0 as2 ::1-3-z—o+3- 2
tc tc \tc tsub tsub
Aeff :=m-a>Ia Aeff =0.031
Il. CALCULATE EQUIVALENT-CIRCUIT PARAMETERS
Equivalent mass:
2 Ia®
mass :=2-7-a”Ike-—(pc-tc + psub-tsub) mass =3.82
Iv
Equivalent stiffness:
12 12
f11:=cdl1- 0.75-gs33-h31% 2 f12:=cd12- 0.75-es33-h312. 2
ac2 ac2
csli ':..__ES&
' 2 cs12 = vsub-csil
1 - vsub
Iff :=f11-Ip0 + f12:Ipl Iss = csl1-Ip0+ cs12:Ipl
2m Ia® (3 3
stiffness ::-—3-~—2- (tc -ac2-Iff + tsub -as2-Iss) stiffness = 1.16+10°
3-a” Iv

Transduction factor:

¢ =- n-h31~es33'lq-i—a~tc-acl 0 =1.461
\

Blocked electrical capacitance:
- . 2 —
CEB =% Ja CEB =2482:10 °

Coupling factor:

2
K1 -= stiffness- L K2 = mes33-h31 2t
Ia2 la 4

:\.Iizlacl2



K2 = K2 —
Tkl k2 K2 =7.352:10 °

Calculate equivalent Q for composite structure:

3
Uratio .= [— 252 Iss Qeff := Qmech-(1 + Uratio)
tc /| ac2 Iff

Rmech 1= st1ffness_mass
mass  Qeff

Calculate circuit elements for parallel form of radiation impedance. This form is preferred over the
series form since, in the parallel form, the resistance element is frequency independent. Furthermore, the
parallel form degrades more gracefully for ka approaching (or greater than) one. Also, the assumption is
made that these transducer elements would always be used in pairs placed back-to-back and driven in
phase. In this drive mode, the radiation impedance is equivalent to that of a single element in an infinite
rigid baffle.

- 1

Zrad —> Rrad mrad
p_water := 1000 c_water := 1500
m_rad := i-p_walterva- (n-az)-la R_rad '=1.44-p_water-c_water- (n'az){a

3n
Write equivalent-circuit parameters to a file:

WRITEPRN(ES2L_equivckt) := (mass stiffness ¢ CEB k2 tand Rmech R_rad m_rad Aeff)

Ill. MISCELLANEOUS CALCULATIONS

Unloaded resonance frequency:

mech_res i=—1—- stiffness mech_res =877.156
27 mass




Rough estimate of water loading (piston with uniform face velocity):

rad_mass = -&-p_water-n~a3-la w2water .= ___snﬂe_ss_ pwatera _ 65.789
3. mass + rad_mass pc-2-tc

mech_res_water := —1— w2water mech_res_water = 673.113

21

_ 2-m-mech_res_water .

wavenum .= ka :=wavenum-a ka =0.282

c_water

2 ka’ 3

radR := p_water-c_water-1-a -Ia~7 radR =1.873-10

Estimated maximum source level (if strain limited):

[Note: Maximum strain is not an appropriate failure criterion for a ceramic material. Itis used in this
draft version as a crude estimate of limiting performance. Eventually, the more appropriate maximum
tensile stress criterion will be implemented. The often-used von Mises stress criterion is also inappropriate
for failure in ceramic.]

Enter maximum allowable strain Smax :=0.001

2
Qmax =ma -2-m-mech_res_water-wnmax-Smax-Iv

pl:= }p_water-mech_res_water~Qmax| SL :=20-log(pl) + 120
Maximum pressure at 1 meter (Pa): pl =2.92- 10
Maximum SL in dB with respect to 1 micropascal at one meter: SL =209.3

Estimated peak TVR:

What follows is an optimistic estimate of the peak transmitting voltage response; mechanical loss
in the ceramic is ignored.

¢
radR

tvr_peak := p_water-mech_res_water- 7 az-Ia-

TVR in pascals at one meter per volt input: tvr_peak = 16.489

TVR in dB with respect to 1 micropascal at one meter per volt: 20-log( | tvr_peak| ) + 120 = 1443




Low-frequency receive response:

The receiving response is not normally important but can be useful in reciprocity calculations.

na’la 1
ffvs := ‘
) CEB:-stiffness
Ly —————
¢
FFVS in open-circuit volts per pascal: ffvs =1.581-10 *
FFVS in dB with respect to one volt per micropascal: 20-log( | ffvs| ) - 120 =-196.0

The quantity in square brackets in the equation for ffvs should equal 02

1
CEB:-stiffness
I+ —

¢

=7.352:10 ° K2 =7.352:10 °
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Module 1.ES3L config: Confiquration Definition - Edge-Supported Trilaminar Dist

This worksheet is specific to the three-layer edge-supported disk. First, the physical dimensions are
specified and the piezoelectric properties file is read. Then, the two-dimensional properties are derived.
Finally, the results are written to a configuration file.

| CERAMIC
HINGED EDGE . t,
SUPPORT
I. SELECT MATERIALS [Highlighted values are user inputs]

Choose from PZT4, PZT5H, or PZT8 for file name in pzt READPRN.

pzt :=READPRN(PZT4)

‘_ _12 1 o 12 1 _
sell A—pzto‘o-lO -;; sel2 .—pzto,l-IO g €t33 —pzt0‘2~80
a31=pzt 10720 0 =pzt. KB
0.3 volt 0.4 3 tand := pzt, Qmech :=pzty

Choose from steel, aluminum, or brass for file name in substrate READPRN.

substrate := READPRN(brass)

K .
psub := substrate | 0-—g3 Esub = substrate, - 10°-Pa vsub := substrate, ,
m

psub =8.5-10° kgrm ° Esub =1.04-10'" *kg'm 'sec vsub =0.37



Il. SELECT DIMENSIONS

Enter dimensions of ceramic disk (a = outside radius; tc = thickness)
and thickness (tsub) of substrate disk:

[Enter units for in, mm, cm, or m; if no units are entered, meters will be assumed]

a:=10-cm tc:=1-mm tsub :=1-cm b:=0

a=0.1'm b=0 tc=1-10" *m 152 = 540

Ill. DERIVE PROPERTIES FOR TWO-DIMENSIONAL ANALYSIS

2 2
sd11 ::sell—iﬂ—1 sd12:=5612—dB—1 -—Sﬂ=0.485
£133 €133 sdll
i =S4t iz =842 odl2 _ 485
sd11? - sd12? sd11? - sd12 cdll
2-d312 d31
£s33 =633 - — =20 W3l =
sell +sel2 €t33-(sd!11 + sd12)

IV. WRITE CONFIGURATION FILE

PRN files cannot handle dimensions so all quantities are written (in Sl) without units.

out, = P out, = a out. . :=b out . = te

0,0 00 01" o 0,2 03" o
- - cdll out. . = cdl2 out. = h31 out. _ i= €s33

0,4 0 0,5 0 0,6 1o 0,7 0

sub Esub
out, ¢ :=tand outy o =Qmech outy o =z PSUD out0 0
! ’ ’ p0 ’ c0

out = vsub out = t_sz out 182

0,12 0,13 o 0,147 o

WRITEPRN(ES3L_config) :=out



The configuration file contains the following quantities in this order:

density of ceramic, p

outer radius of disk, a

ratio of inner radius to outer radius, b (always zero here)
thickness of ceramic, tc

cd11 for ceramic

cd12 for ceramic

h31 for ceramic

£s33 for ceramic

loss tangent for ceramic, tand

mechanical Q of ceramic

density of substrate, psub

modulus of substrate, Esub

poisson's ratio of substrate, vsub

half thickness of substrate, ts2

location of neutral plane (same as half substrate thickness)

Unit normalization quantities (predefined):

00=1.X8 m0=1-m c0=1-Pa no=1.Yo! ¢0=1.farad
m m m
¢0=8.854.107 25834

m
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Flexural-Disk Transducer Analytical Model - DRAFT VERSION 3.0

Module 2.ES3L deflect: Edge-Supported Trilaminar Disk

This worksheet reads the configuration file, calculates the first axisymmetric mode deflection function,
and then calculates all of the shape integrals. The shape integrals are written to a file for subsequent use.
In this version, the polynomial Rayleigh-Ritz method is used to compute the mode deflection function. An
eighth-order polynomial is used. This module is expecting the configuration file from version 2 -- that is, the
configuration with arbitrary location of the neutral plane and specific properties for the substrate.

I. READ CONFIGURATION FILE

(pc a b tc cdll cdl2 h31 es33 tand Qmech psub Esub vsub tsub z0) :=READPRN(ES3L_config)

:cd12
cdll

a=0.1 b=0 tc =0.001 ve ! ve =0.485282

v:=0.5-(vc + vsub) v=0427641

Il. MODE SOLUTION

In this section, the Rayleigh-Ritz technique is used to find the fundamental eigenvalue and eigenfunction for
an 8th order polynomial. (N is preset to 8 below.)

UU :=U(N,b,v) TT :=T(N,b,v)
gvals := genvals(UU, TT)

gvecs = genvecs(UU, TT)

sgcomb :=rsort (stack <gvalsT, gvecs) ,O)

fundval := /sgcombo 0 fundval =5.116155

Hll. FIND THE COEFFICIENTS FOR THE DEFLECTION FUNCTION
fundcoef := submatrix(sgcomb, 1,N,0,0)
CC :=scaledcoef{ fundcoef,N,b)

The coefficients are normalized so that the maximum deflection is one.



{V. PLOT THE NORMALIZED STRESSES

eta:=b,b+ 0.002..1

RadialStress( eta, CC,N,b, v)

TangentialStress(eta, CC,N,b, v)

eta

V. CALCULATE THE SHAPE INTEGRALS

Ike :=CCT-TT-CC Ike = 0.140926
Ia=1- b? l[a=1
Iv:=CCT-VV(N,b) Iv = 0.445882
Iq:= CCT-QQ(N, b) Iq = 1.401826
Ipsum :ZCCT-Usum(N,b,v)'CC Ipsum =4.813486
Ipl =ccT-UpI(N,b,v)-CC Ipl =1.965116
Ip0 = Ipsum - Ipl 1p0 =2.84837

The maximum strain is at the inner radius. The second derivative of the normalized deflection is
calculated below (maxcurve) and the peak deflection (i.e., deflection at r = a) corresponding to a strain of
one is saved (wnmax).

2

maxcurve .= CCT-SM(N,b) wnmax | = a wnmax =0.616393

(tc+ 20) ‘maxcurve,

Write shape-integral file:

WRITEPRN(ES3L _deflect) := (Ip0, Ipl, Iq, Iv, Ike, Ia wnmax N CC
PY Pl 0

0 0

Because several of the shape integrals are calculated through matrix operations, they remain as

matrices even though having dimension 1x1. The subscript index is used to convert to scalar form before
writing. The coefficients are written as a matrix (Nx1) as CC.

What follows are predefinitions...



N=8

scaledcoef( vect,N,b)=

Usum(N,b,v)=

ua

Upl(N,b,v)=

ubb

ub

U(N,b,v)=

uu

SM(N,b)=

sm
m—1

S 2

sm

uam-— f,n—1

m-—1l,n-1

peakdefl—0
for iie 1..N
peakdefl— peakdefl + vect, |

vect
peakdefl

vectscaled—

vectscaled

for me 1..N
for ne 1..N

h(m+1f(n+1f
m-n

for me 1..N
for ne 1..N

(_n-(n+ ) (m+ 1)
m+n

ube - ubb 4 ubb "

uue— Usum(N,b,v) - (1 - v)-Upl(N,b,v)

for me 2..N
<0



T(N,b,v)= | for me 1..N
for ne 1..N
1 1 1 1

m+n+4 m+3 n+3 2

tt

m~l,n— 17

VV(N,b)= | for me 1..N
2
m+ 3

matv —1-
m-1

matv

QQ(N,b)= | for me 1..N

matv l<~(m + 1)

matv

slope(eta, vect,N,b) = | slope—0
for iie 1..N

slope«slope + vect, -(ii+ l)-etaii

slope

curve(eta,vect,N,b)= | curve—0

for iie 1..N
" il
curve« curve + vect,, l-(u +1 )-u-eta"

curve

v-slope(eta, vect,N,b)

RadialStress(eta, vect,N,b, v)=curve(eta, vect,N,b) +
eta

slope(eta, vect,N,b)

TangentialStress(eta, vect,N,b, v) =v-curve(eta, vect,N,b) +
eta
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Module 3: Equivalent-Circuit - Trilaminar, Edge-Supported Flex Disks

This worksheet reads the configuration and shape-integral files for a particular case and computes the
equivalent-circuit parameters.

avg
— 1:1 —
o 7YY Y\ /\/\/\/__j
+ m
R R
e D — 17k 2
rad
CEB
- C J

. < [Ivavg

I—-——)

L0 J"";’ﬂ?——”——’\/\/\/———;
m R /2

_— 02/ k m Zrad
Ces 02
- il

in these equivalent circuits, the mechanical quantities, force (pA or acoustic pressure times effective area)
and velocity, v, are related to the electrical quantities, voltage, e, and current, i. Cggis the blocked
electrical capacitance and Ry is the dielectric loss (tand/w*Cgg). The mechanical mass, stiffness, and
mechanical damping are m, k, and R, respectively. The mechanical resistance is computed based on the
mechanical Q of the ceramic and the fraction of strain energy that is stored in the ceramic layer of the
composite. The radiation impedance, Zrad, is represented as a parallel combination of resistance and
mass (see below). Finally, the electromechanical transduction factor (the "turns ratio”) is ¢.

I. READ FILES

Read configuration file:
(pc a b tc cdll cdl2 h31 es33 tand Qmech psub Esub vsub tsub z0):=READPRN(ES3L_config)

a=0.1 b=0 te=1-10 °




Read shape-integral file:
(Ip0 Ipl Iq Iv lke Ia wnmax N

ac2 =1+ 3.59* 3
tc

acl ::1~x-2~EQ
tc

Aeff 2=1'c'a2~Ia

CC) :=READPRN(ES3L_deflect)

2 2
/5_0 382:21_3.._ZO_+3.Z_0
\tc tsub tsub
Aeff =0.031

Il. CALCULATE EQUIVALENT-CIRCUIT PARAMETERS

Equivalent mass:

2
mass = 4~n-a2~IkeA1a—2-( pc-tc+ psub-tsub)
Iv

Equivalent stiffness:

2
F11:=cdl 1 0.75-6s33-h31% 21
ac2

csll ::ﬂg—

1- vsub2

Iff .=f11-Ip0+ f12-Ipl
tc3-ac2~lff+ tsub3-as

Transduction factor for parallel con

¢ :=-2 n-h31-as33vlq-i~a-tc~acl
v

Blocked electrical capacitance:

CEB ;:M.Ia

tc

mass =4.463

2
£12 = cd12 - 0.75-es33h312.2°L
ac?2

csl2 :=vsub-csll

Iss .=cs11-Ip0+ cst2-Ipt
stiffness = 1.747-10°

2-Iss>

nection of ceramic layers:

6 =3.213

CEB =4.96510

Coupling factor for paralle! connection of ceramic layers:

Iv2
kfl :=stiffness-—
Ia

2.3 qu acl’
kf2 :=2-m-es33-h31% t¢” ——

la 4



K2 ':__kf:z___
' kfl + kf2 k2 =0.106

Calculate equivalent Q for composite structure:

tsub\® as2 Iss
Uratio = [— | ~——— Qeff := Qmech-(1 + Uratio)
tc /| ac2 Iff

Remech = stiffness mass
mass  Qeff

Calculate circuit elements for parallel form of radiation impedance. This form is preferred over the
series form since, in the parallel form, the resistance element is frequency independent. Furthermore, the
parallel form degrades more gracefully for ka approaching (or greater than) one. Also, the assumption is
made that these transducer elements would always be used in pairs placed back-to-back and driven in
phase. In this drive mode, the radiation impedance is equivalent to that of a single element in an infinite
rigid baffle.

1

Zrad E Rrad mrad
p_water := 1000 c_water := 1500
m_rad := —S--p_water-a~(n-a2)-la R_rad :=1.44-p_water-c_water- (n»az>-1a
3n

Write equivalent-circuit parameters to a file:

WRITEPRN(ES3L_equivckt) :=(mass stiffness ¢ CEB &2 tand Rmech R_rad m_rad Aeff)

Hl. MISCELLANEQUS CALCULATIONS
Unloaded resonance frequency:

1 stiffness
mech_res 1= —-

21 mass

mech_res =995.732



Rough estimate of water loading (piston with uniform face velocity):

8 stiffness water-
rad_mass ;= —-p_water- 7 a3-Ia w2water = ——8 p_watera 6.579
3.1 mass + rad_mass pc-2-te
mech_res_water = L w2water mech_res_water = 787.8
2
T es_water
wavenum ;= 2-mmech,_res. ka :=wavenum-a ka =0.33
c_water
2 ka2 3
radR := p_water-c_water-n-a"-Ja-— radR =2.566°10
2

Estimated maximum source level (if strain limited):

[Note: Maximum strain is not an appropriate failure criterion for a ceramic material. Itis used in this
draft version as a crude estimate of limiting performance. Eventually, the more appropriate maximum
tensile stress criterion will be implemented. The often-used von Mises stress criterion is also inappropriate

for failure in ceramic.]

Enter maximum allowable strain Smax :=0.001

2
Qmax :=-a”-2-7w-mech_res_water-wnmax-Smax-Iv

pl:= {p_water-mech_res_water-Qmax’ SL :=20-log(pl) + 120
Maximum pressure at 1 meter (Pa): pl =3.367 10*
Maximum SL in dB with respect to 1 micropascal at one meter: SL =210.5

Estimated peak TVR:

What follows is an optimistic estimate of the peak transmitting voltage response; mechanical loss
in the ceramic is ignored.

tvr_peak := p_water-mech_res_water-- a2- IaA—¢—
radR

TVR in pascals at one meter per volt input: tvr_peak =30.989

TVR in dB with respect to 1 micropascal at one meter per volt:  20-log( |tvr_peak| ) + 120 =149.8



Low-frequency receive response:

The receiving response is not normally important but can be useful in reciprocity calculations.

na’la 1
ffvs := .
CEB-stiffness
Ly
¢
FFVS in open-circuit volts per pascal: ffvs =1.0410 °
FFVS in dB with respect to one volt per micropascal: 20-log( |ffvs|) - 120 =-179.7

The quantity in square brackets in the equation for ffvs should equal 02

1
CEB-stiffness
1+ —

¢

=0.106 k2 =0.106
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Performance Module

This worksheet can be used with any of the flexural-disk configurations. Several performance-related
measures are calculated from the basic equivalent-circuit representation. These include: (1) unloaded
admittance, (2) water-loaded admittance, (3) transmitting voltage response, and (4) transmitting current
response. For (3) and (4) the radiation impedance is taken to be that of a piston in an infinite, rigid baffle.
This is appropriate either for a truly baffled transducer or for a transducer that was constructed from TWO
flexural-disk elements mounted back-to-back as would normally be done in a high-performance system.
The two-element system is the image equivalent of a single projector in an infinite, rigid baffle. Remember
that the electrical characteristics (e.g., (1) and (2) above) are for a single element. If a two-element system
is being modeled, the user must adjust the electrical parameters according to the electrical connection of

the elements (series or parallel).

Required user input is the name of the file containing the equivalent-circuit parameters:
(mass stiffness ¢ CEB k2 tand Rmech R_rad m_rad Aeff) :=READPRN(CC2L_equivckt)

Restore physical Si units:

mass ' = mass-mass_unit stiffness = stiffness-stiffness_unit
¢ = ¢-¢_unit CEB := CEB-capacitance_unit
Rmech := Rmech-Rmech_unit R_rad :=R_rad-Rmech_unit
m_rad := m_rad-mass_unit Aeff ;= Aeff-area_unit

If you want to model a closed, fluid-filled cavity behind the flexural disk, set 'cavity' equal to one; if not,
make sure that 'cavity' is set to zero and skip entry of cavity/fluid properties.

cavity :=0

Enter optional fluid-cavity properties (set ‘cavity' to zero to disable

Enter volume, vc, of cavity; density, pf, of cavity fluid; and sound speed, cf, of cavity fluid:
[For a back-to-back two element transducer, enter only half the total cavity volume.]
ve :=0.0016-m’ pfzrsoo-l‘—% of := 1400- ™

m s€C

[Make sure to enter units for quantities; if no units are entered, Sl will be assumed]



Cavity stiffness:

2
ke = pf-cfz-gALff)—— stiffness =4.157 107 'kg'sec_2
ve _
ke =2.229-10° +kgrsec 2

stiffness := stiffness + ke-cavity

The unloaded resonance frequency and Q are

f0 ::_1_' stiffness

2T mass

0 =1.027°10° *sec |

mass
Rmech

Q_unload :=2-7-f0- Q_unload = 1.14610°

The electrical equivalents of the mechanical mass, compliance, and resistance are

¢2
mass Cm_e = Rmech_e:

2 i 2
o stiffness o

. _ Rmech
mass_e := =

The admittance calculation is broken into three parts: Y1 is the dielectric loss, Y2 is the blocked
capacitance, and Y3 is the electrical equivalent of the mechanical section.

Y1(w) ‘= w-CEB-tand Y2(w) :=j -w-CEB Y3(w) = !

1

Rmech_e +j -w-mass_e + ———
j wCm_e

Y_unloaded(f) :=Y1(2-n-f) + Y2(2-7-f) + Y3(2-7-f)

The awkward part of plotting the unloaded admittance is that the unloaded Q is high and the resonance
peak is sharp. The fmat routine produces a matrix (fx) of unevenly spaced frequencies so that the
resonance is well defined in the plot without excessive calculation of points away from the resonance. For
water-loaded calculations, this is unnecessary.

fx := fmat(f0, Q_unload, k2) nn =0.. length(fx) - !

ymat(fx) := | for mme 0..length(fx) - 1
VYo & Y_unloaded (fxmm) Y_U :=ymat(fx)
Yy



UNLOADED ADMITTANCE
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Calculate the water-loaded resonance frequency and the Q:

2
: 5.7 0w
fow o L | stiffness XX = /M R_at_f0_rad := R_rad-»/ XX

2.1 A mass + m_rad \ R_rad \1 + XX

mass + m_rad

Rmech + R_at_f0_rad

Q_water :=2-x-f0- fOw = 745.664-sec | Q_water =22.728

Calculate the electrical equivalents of the radiation impedance terms and calculate the electrical equivalent
of the radiation impedance (using the parallel mass/resistance model):

m_rad

¥ ._Rrad Zrad_e(w) = j -w-Rrad_e-mrad_e

2 2 RERYS
) ) Rrad_e +j -wmrad_e

mrad_e := Rrad_e




Calculate the admittance term for the mechanica! side including the radiation load:

Yé(w) = !

Rmech_e +j -w-mass_e + 1 + Zrad_e(w)
j w-Cm_e

Calculate and plot the total admittance. An even increment in frequency is suitable since the Q should be
much lower with the water load.

Y_water(f) := Y1(2-m-0) + Y2(2-1-f) + Y4(2-6)

_ff2- ffl
200

ff1 =0.5-f0w ff2 :=1.5-f0w dff: ffx := ff1, ffl1 + dff.. ff2

WATER-LOADED ADMITTANCE

oin 3
1°10 T T T T T T T T

Admittance [ohms”-1]

~4 I ] | ] | | 1 |
300 400 500 600 700 800 900 1000 1100 1200

1°10

Frequency [Hz]

40107 , ,

w
2
K]
)y
S
|
I

2

Imaginary (admittance)
=
=)
|

".'
=)
[
]

| |
1e10# 21074 310 4
Real (admittance)

(=3



Calculation of Transmitting Voltage Response
The pressure (in Pa) at one meter per volt drive is

rho_water := 1000'k—g3 p_per_volt(f) := Aeff-rho_water-f————Y4(2'n'f)

m
or, in dB with respect to one micropascal at one meter per volt,

dB_TVR_ref := 1022 1.m

volt

dB_TVR(f) :=20-log| P2=Yol(D)
dB_TVR_ref

TRANSMITTING VOLTAGE RESPONSE
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Calculation of Transmitting Current Response

The pressure (in Pa) at one meter per ampere drive is

_ p_per_volt(f)

p_per_amp(f) :
Y _water(f)

or, in dB with respect to one micropascal at one meter per ampere,

dB_TCR_ref =102 .1.m
amp

4B_TCR(f) = 20-1og| PR=2mR(D)
\ dB_TCR_ref
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Predefinition of routine to calculate frequencies for unloaded admittance plot:

fmat(f0,Q,k2)=

fl—0.5
2 0.6
fdipe
1-k2
dpme- fdip- 1

31+ 0.375-dpm
f4—1+ 0.625-dpm
f5 1.1-fdip
f6— 1.2-fdip

2
fome—1 - —
fop— 1 + 2

. .2
fdipme fdip - —
Q

2
fdipp fdip + —
Q

f5if(f5<1.4,1.4,15)
f6— if(f6<1.5,1.5,16)
2 if( f2<fom, fom, {2)
3« if( f3>fop, fop, f3)
f4— if( f4<fdipm, fdipm, f4)
5 if(f5>fdipp, fdipp, f5)

f2-f1

100

dfae—




cum_me« 0
| for mme 0..99
ff «fl+ mm-dfa
mm

afpe B 12
‘ 50
cum_me cum_m+ 100
for mme 0..49
| « f2 + mm-dfb

cum_m + mm
f4 - 13
25

cum_me cum_m+ 50

dfce

for mme 0..24

ff « f3 + mm-dfc
cum_m + mm

Fdfde— f_S:_E
50
cum_me cum_m + 25
for mme 0..49
ff  f4 + mm-dfd

cum_m + mm
f6 - f5
100

dfe—

| curn_me cum_m + 50
: for mme 0..99
ff —f5 + mm-dfe

cum_m 4+ mm

' £f- 0

Predefinitions of unit factors

. . newton-sec
mass_unit=1-kg Rmech_units ] ————————
m
. . newton .
stiffness_unit=1-—— area_unit=1 -m2
m
. newton . .
¢o_unit=] - ——r capacitance_unit=1-farad

volt
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Appendix I. MathCad Materials Files
PZT4.pm
123 -4.05 1300 -122 7600 0.004 500

PZTSH.pm
16.5 -4.78 3400 -274 7500 0.02 70

PZT8.pm
11.5 -3.7 1000 -97 7500 0.004 1050

brass.prn
8500 104 0.37

aluminum.prn
2700 70 0.33

steel.prn
7700 195 0.28

I-1
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